Thalassiosira Mala

Total Page:16

File Type:pdf, Size:1020Kb

Thalassiosira Mala J Biosci Vol. 43, No. 1, March 2018, pp. 59–74 Ó Indian Academy of Sciences DOI: 10.1007/s12038-018-9730-0 Thalassiosira mala (Bacillariophyta), a potentially harmful, marine diatom from Chilka Lake and other coastal localities of Odisha, India: Nomenclature, frustule morphology and global biogeography 1 2 3 AKSHINTHALA KSKPRASAD *, JAMES ANIENOW and ERIC LOCHNER 1Department of Biological Science, Florida State University, Tallahassee, FL 32306–4370, USA 2Department of Biology, Valdosta State University, Valdosta, GA 31698–1500, USA 3Department of Physics, Florida State University, Tallahassee, FL 32306–4351, USA *Corresponding author (Email, [email protected]) MS received 7 August 2017; accepted 14 December 2017; published online 18 January 2018 Our examination of net phytoplankton collected from coastal localities in Odisha on the east coast of India, including Chilka Lake, Chandrabhaga Beach and Puri, in December 2015, revealed the overwhelming dominance of Thalassiosira mala, a gelatinous colony-forming, potentially harmful, marine planktonic diatom. The large numbers of cells allowed us to observe details of the cingulum not previously reported. The epicingulum is composed of four open bands including an areolated valvocopula, an areolated copula and two non-areolated pleurae. The immature hypocingulum includes at least two bands. Openings of alternate bands are arranged in a dextral pattern. Based on previous reports from the west coast and our current findings, Thalassiosira mala appears to be a common, widely distributed primary producer in Indian coastal waters. The presence of morphologically similar species, especially those\20 lm in diameter, underscores the importance of reliable species-level taxonomy using appropriate techniques for meaningful ecological and biogeographic considera- tions and for monitoring potentially harmful algae in India’s economically important coastal waters. Published reports suggest that Thalassiosira mala is widely distributed in temperate and tropical waters, present in 26 of 232 ecoregions and 18 of 62 provinces recognized in a recent classification of coastal marine ecoregions. Keywords. Bay of Bengal; biogeography; Chilka Lake; diatom; fine structure; taxonomy; Thalassiosira mala 1. Introduction us a better understanding of the true relationships among the genera and species of diatoms. Therefore, we are currently Diatoms are single-celled, photosynthetic microalgae char- examining archived samples of marine diatoms in the col- acterized by the presence of a two-part siliceous covering lection of Professor Desikachary from the coastal waters of known as the frustule. In marine systems they are a major the Bay of Bengal, together with additional materials col- component of phytoplankton, and may contribute as much as lected recently by the senior author, and using a combination 20% of the global primary productivity (Field et al. 1998; of light and electron microscopy to determine the hidden Uitz et al. 2010; Malviya et al. 2016). In light of the diversity of the diatom flora of the region. Our preliminary importance of diatoms to marine ecosystems, 30 years ago investigations indicate that the diatom flora will include Professor T. V. Desikachary and his research group pub- many more species than currently reported. lished the six-volume Atlas of Indian Ocean Diatoms (De- Of particular interest to us are members of the genera sikachary 1986–89). This monumental work includes light Thalassiosira Cleve emend. Hasle and Coscinodiscus micrographs of nearly all of the diatom species known from Ehrenberg emend. Hasle and Sims, two of the dominant and the region at the time. However, many changes have most frequently encountered planktonic diatom genera in occurred in our understanding of diatom taxonomy since the Indian coastal waters. Before the advent of electron micro- publication of the Atlas. In particular, the widespread use of scopy, the differences between these two genera were not electron microscopy has provided new information on the clear. Both genera were included in the family Coscinodis- fine structure of the diatom frustule, including details not caceae Ku¨tzing and species were assigned to one genus or visible in light microscopy. This new information has given the other on the basis of characters now known to be of little http://www.ias.ac.in/jbiosci 59 60 A K S K Prasad et al. value in the delineation phylogenetic relationships. Thalas- morphology for the Indian materials, including the details of siosira and Coscinodiscus are now placed in separate fam- the cingulum not previously reported, and to compare frus- ilies, with Thalassiosira serving as the generitype of tule morphology with other small species of Thalassiosira Thalassiosiraceae Lebour emend. Hasle and Coscinodiscus also present in Indian coastal waters, some known to form serving as the generitype of Coscinodiscaceae. The two similar formless gelatinous colonies; and (4) to present an families are distinguished by details of the structure of the overview of the global distribution of T. mala following the areolae, including the position of the vela (internal in Tha- recent biogeographic classification of the coastal Marine lassiosiraceae, external in Coscinodiscaceae) and foramina Ecoregions of the World (MEOW) proposed by Spaulding (external in Thalassiosiraceae, internal in Coscinodiscaceae), et al. (2007). the nature of the marginal ring of processes (fultoportulae in Thalassiosiraceae, rimoportulae in Coscinodiscaceae), and the complete absence of fultoportulae in Coscinodiscaceae, 2. Materials and methods features that can only be resolved with certainty through the use of scanning electron microscopy (Hasle 1973b; Ross and 2.1 Materials and collection sites Sims 1973). Hasle (1968, 1972a, 1973a) first described structure of fultoportulae, the diagnostic valve processes Net phytoplankton (25 lm mesh) samples were collected in within the genus Thalassiosira, and emended the generic December 2015 from three coastal locations in Odisha description. The arrangement of areolae, fultoportulae, and (formerly, Orissa) on the east coast of India (Bay of Bengal): rimoportulae are widely considered to be important in the (1) Dolphin’s Cove (ca. 19.845° N, 85.479° E), near delineation of species of Thalassiosira (Fryxell 1975; Rivera Satapada Village, at the new mouth of Chilka Lake. 1981; Mahood et al. 1986; Makarova 1988; Hasle and This sampling site is located approximately 55 km Syvertsen 1996). Live cells in most species of Thalassiosira from Puri, Odisha, on the eastern side of Chilka Lake. form chains with sibling cells linked by threads of chitin Chilka Lake (also known as Chilika Lake) is the largest (McLachlan et al. 1965). However, about a dozen species of brackish water lake in Asia. It is connected to the Bay Thalassiosira form colonies of cells embedded in a common of Bengal by a long (35 km), narrow channel in the mucilage; the formation of mucilaginous colonies may be state of Odisha, India. Chilka Lake covers an area of associated with harmful effects (Hasle and Fryxell 1995; approximately 900–1100 km2 (Raman et al. 1990). Fryxell and Hasle 2003). During the monsoon season considerable quantities of The genus Thalassiosira is well represented in Indian freshwater are discharged into the lagoon through a waters, with *60 species reported from the region, includ- number of rivulets and rivers, including the Daya, ing the east (Bay of Bengal) and west coasts (Arabian Sea) Bhargabi and Nuna rivers, which drain into the and Indian Ocean waters (Venkataraman 1939; Subrah- northeast end; as a result, the area of the lake increases manyan 1946; Misra 1956; Simonsen 1974; Hasle 1976; by several hundred square kilometers during the Desikachary 1986–89; Samanta and Bhadury 2015), of monsoon season. The salinity varies from trace levels which at least five were described from Indian waters as new to 36% (Panigrahi et al. 2009). to science, T. coramandeliana Subrahmanyan, T. marginata (2) Chandrabhaga Beach (ca. 19.865o N, 86.113o E), Venkataraman, T. plicatoides (Simonsen) Akiba and located three km east of the Sun temple of Konark, in Yanagisawa (as Coscinodiscus plicatoides Simonsen), T. the Puri district in the state of Odisha, India. sundarbana Samanta and Bhadury and T. tropica Misra. In (3) Puri, Odisha (19.813° N, 85.832° E), located 30 km the present report we focus on Thalassiosira mala Takano, a southwest of the previous site. nanoplanktonic species forming massive gelatinous colo- nies, occasionally reaching bloom numbers. It was the dominant nanoplankter in net hauls collected from coastal areas of the state of Odisha (formerly known as Orissa), 2.2 Preparation of material for light and electron including Chilka Lake, Chandrabhaga Beach (near the city microscopy of Konark) and Puri, suggesting its widespread distribution in Bay of Bengal waters. Samples were preserved in Lugol’s iodine in the field. Ali- The purpose of the present paper is four-fold: (1) to quots of each sample were cleaned of organic matter using a record, for the first time, the presence and overwhelming combination of hydrogen peroxide and hot concentrated dominance of the potentially harmful marine planktonic sulfuric acid followed by 10 rinses with de-ionized water. diatom Thalassiosira mala in Chilka Lake and other coastal Small aliquots of a suspension of cleaned material were localities in the State of Odisha; (2) to clarify the correct date mounted in Naphrax for light microscopy (Prasad et al. of the validating publication
Recommended publications
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Diversity and Dynamics of Relevant Nanoplanktonic Diatoms in The
    Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel Laure Arsenieff, Florence Le Gall, Fabienne Rigaut-Jalabert, Frédéric Mahé, Diana Sarno, Léna Gouhier, Anne-Claire Baudoux, Nathalie Simon To cite this version: Laure Arsenieff, Florence Le Gall, Fabienne Rigaut-Jalabert, Frédéric Mahé, Diana Sarno, etal.. Diversity and dynamics of relevant nanoplanktonic diatoms in the Western English Channel. ISME Journal, Nature Publishing Group, 2020, 14 (8), pp.1966-1981. 10.1038/s41396-020-0659-6. hal- 02888711 HAL Id: hal-02888711 https://hal.sorbonne-universite.fr/hal-02888711 Submitted on 3 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5 9 / w b [ ! ! " C [ D ! " C % w &W % (" C) ) a ) +" 5 , -" [) D ." ! &/ . 0 " b , ,% 1 )" /bw," 1aw 2 -- & 9 a t " , .4 w" (5678 w" C (,% 1 )" /bw," C) ) w Cw(-(-" , .4 w" (5768 w" C +/9w!5" 1aw .Dt9" +-+56 a " C -, : ; ! 5 " < / " 68 ( b " 9 .,% 1 )" /bw," Cw(-(-" w / / " , .4 w" (5768 w" C ! = % 4 / [ ! , .4 w 1aw 2 -- /bw,&,% 1 ) t D = (5768 w C >%&? @++ ( 56 (5 (+ (+ ! b , , .4 w 1aw 2 -- /bw,&,% 1 ) t D = (5768 w C >%&? @++ ( 56 (5 (.
    [Show full text]
  • PHYCOLOGICAL REVIEWS 18 the Species Concept in Diatoms
    Phycologia (1999) Volume 38 (6), 437-495 Published 10 December 1999 PHYCOLOGICAL REVIEWS 18 The species concept in diatoms DAVID G. MANN* Royal Botanic Garden, Edinburgh EH3 5LR, Scotland, UK D.G. MANN. 1999. Phycological reviews 18. The species concept in diatoms. Phycologia 38: 437-495. Diatoms are the most species-rich group of algae. They are ecologically widespread and have global significance in the carbon and silicon cycles, and are used increasingly in ecological monitoring, paleoecological reconstruction, and stratigraphic corre­ lation. Despite this, the species taxonomy of diatoms is messy and lacks a satisfactory practical or conceptual basis, hindering further advances in all aspects of diatom biology. Several model systems have provided valuable insights into the nature of diatom species. A consilience of evidence (the 'Waltonian species concept') from morphology, genetic data, mating systems, physiology, ecology, and crossing behavior suggests that species boundaries have traditionally been drawn too broadly; many species probably contain several reproductively isolated entities that are worth taxonomic recognition at species level. Pheno­ typic plasticity, although present, is not a serious problem for diatom taxonomy. However, although good data are now available for demes living in sympatry, we have barely begun to extend studies to take into account variation between allopatric demes, which is necessary if a global taxonomy is to be built. Endemism has been seriously underestimated among diatoms, but biogeographical and stratigraphic patterns are difficult to discern, because of a lack of trustwOlthy data and because the taxonomic concepts of many authors are undocumented. Morphological diversity may often be a largely accidental consequence of physiological differentiation, as a result of the peculiarities of diatom cell division and the life cycle.
    [Show full text]
  • Insights Into Global Planktonic Diatom Diversity: Comparisons Between Phylogenetically Meaningful Units That Account for Time
    bioRxiv preprint doi: https://doi.org/10.1101/167809; this version posted July 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Insights into global planktonic diatom diversity: Comparisons between phylogenetically meaningful units that account for time Teofil Nakov, Jeremy M. Beaulieu, and Andrew J. Alverson Department of Biological Sciences University of Arkansas 1 University of Arkansas, SCEN 601 Fayetteville, AR 72701 Abstract Metabarcoding has offered unprecedented insights into microbial diversity. In many studies, short DNA sequences are binned into consecutively higher Linnaean ranks, and ranked groups (e.g., genera) are the units of biodiver- sity analyses. These analyses assume that Linnaean ranks are biologically meaningful and that identically ranked groups are comparable. We used a meta-barcode dataset for marine planktonic diatoms to illustrate the limits of this approach. We found that the 20 most abundant marine planktonic diatom genera ranged in age from 4 to 134 million years, indicating the non- equivalence of genera because some had more time to diversify than others. Still, species richness was only weakly correlated with genus age, highlighting variation in rates of speciation and/or extinction. Taxonomic classifications often do not reflect phylogeny, so genus-level analyses can include phylogenet- ically nested genera, further confounding rank-based analyses. These results underscore the indispensable role of phylogeny in understanding patterns of microbial diversity. Keywords: diversification, metabarcoding, microbes, phylogeny Preprint submitted to Bioarxiv July 24, 2017 bioRxiv preprint doi: https://doi.org/10.1101/167809; this version posted July 24, 2017.
    [Show full text]
  • The Evolution of Silicon Transporters in Diatoms1
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Woods Hole Open Access Server J. Phycol. 52, 716–731 (2016) © 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. DOI: 10.1111/jpy.12441 THE EVOLUTION OF SILICON TRANSPORTERS IN DIATOMS1 Colleen A. Durkin3 Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing California 95039, USA Julie A. Koester Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington North Carolina 28403, USA Sara J. Bender2 Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole Massachusetts 02543, USA and E. Virginia Armbrust School of Oceanography, University of Washington, Seattle Washington 98195, USA Diatoms are highly productive single-celled algae perhaps their dominant ability to take up silicic acid that form an intricately patterned silica cell wall after from seawater in diverse environmental conditions. every cell division. They take up and utilize silicic Key index words: diatoms; gene family; molecular acid from seawater via silicon transporter (SIT) evolution; nutrients; silicon; transporter proteins. This study examined the evolution of the SIT gene family
    [Show full text]
  • Full-Length Transcriptome of Thalassiosira Weissflogii As
    marine drugs Communication Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes Haomiao Cheng 1,2,3, Chris Bowler 4, Xiaohui Xing 5,6,7, Vincent Bulone 5,6,7, Zhanru Shao 1,2,* and Delin Duan 1,2,8,* 1 CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; [email protected] 5 Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden; [email protected] (X.X.); [email protected] (V.B.) 6 Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 7 Adelaide Glycomics, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 8 State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China * Correspondence: [email protected] (Z.S.); [email protected] (D.D.) Citation: Cheng, H.; Bowler, C.; Xing, X.; Bulone, V.; Shao, Z.; Duan, D. Abstract: β-Chitin produced by diatoms is expected to have significant economic and ecological Full-Length Transcriptome of value due to its structure, which consists of parallel chains of chitin, its properties and the high Thalassiosira weissflogii as a Reference abundance of diatoms.
    [Show full text]
  • BACHELOR THESIS Surveillance of Phytoplankton Key Species
    BACHELOR THESIS Surveillance of Phytoplankton Key Species in the “AWI-HAUSGARTEN” (Fram Strait) 2010-2013 via Quantitative PCR by Sebastian Micheller Matriculation No.: 739820 in the Bachelor Degree Course Biotechnology – Dept. of Applied Natural Sciences – Hochschule Esslingen, Germany tendered at July 1st, 2014 First Examiner: Prof. Dr. Dirk Schwartz 1 Second Examiner: Dr. Katja Metfies 2 Spaced out till: August 1st, 2015 1 Hochschule Esslingen, 73728 Esslingen a. N., Germany 2 Alfred-Wegener-Institute for Polar & Marine Research, 27570 Bremerhaven, Germany STATEMENT OF AUTHORSHIP I declare that the thesis Surveillance of Phytoplankton Key Species in the „AWI-HAUSGARTEN“ (Fram Strait) 2010-2013 via Quantitative PCR has been composed by myself, and describes my own work, unless otherwise acknowledged in the text. It has not been accepted in any previous application for a degree. Esslingen a. N., July 1st, 2014 Place/date Sebastian Micheller I ACKNOWLEDGMENTS First and foremost, I would like to express my deep gratitude to Dr. Katja Metfies, my supervisor at the Alfred-Wegener-Institute, Bremerhaven. Her patient guidance, enthusiastic encouragement and useful critiques were the cornerstones, making this thesis possible. Beside her, my supervisor Prof. Dr. Dirk Schwartz (Hochschule Esslingen) deserves my special thanks. During my studies at the Hochschule Esslingen, he inspired me for the field of molecular biology, being always a great mentor and support - even across the great distance during this study (Bremerhaven – Esslingen). I feel very great appreciation for them, giving me chances to grow as a person and as a scientist. I would also like to thank Dr. Christian Wolf and Dr.
    [Show full text]
  • The Model Marine Diatom Thalassiosira Pseudonana Likely
    Alverson et al. BMC Evolutionary Biology 2011, 11:125 http://www.biomedcentral.com/1471-2148/11/125 RESEARCHARTICLE Open Access The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella Andrew J Alverson1*, Bánk Beszteri2, Matthew L Julius3 and Edward C Theriot4 Abstract Background: Publication of the first diatom genome, that of Thalassiosira pseudonana, established it as a model species for experimental and genomic studies of diatoms. Virtually every ensuing study has treated T. pseudonana as a marine diatom, with genomic and experimental data valued for their insights into the ecology and evolution of diatoms in the world’s oceans. Results: The natural distribution of T. pseudonana spans both marine and fresh waters, and phylogenetic analyses of morphological and molecular datasets show that, 1) T. pseudonana marks an early divergence in a major freshwater radiation by diatoms, and 2) as a species, T. pseudonana is likely ancestrally freshwater. Marine strains therefore represent recent recolonizations of higher salinity habitats. In addition, the combination of a relatively nondescript form and a convoluted taxonomic history has introduced some confusion about the identity of T. pseudonana and, by extension, its phylogeny and ecology. We resolve these issues and use phylogenetic criteria to show that T. pseudonana is more appropriately classified by its original name, Cyclotella nana. Cyclotella contains a mix of marine and freshwater species and so more accurately conveys the complexities of the phylogenetic and natural histories of T. pseudonana. Conclusions: The multitude of physical barriers that likely must be overcome for diatoms to successfully colonize freshwaters suggests that the physiological traits of T.
    [Show full text]
  • Edward Claiborne Theriot
    E DWARD C LAIBORNE T HERIOT CURRICULUM VITAE J ANUARY 19, 2021 [email protected] Professor, Department of Integrative Biology Director, Texas Memorial Museum University of Texas at Austin I. Education University of Michigan, Ann Arbor, MI, 1978-1983, School of Natural Resources, Ph.D. Louisiana State University, Baton Rouge, LA, 1975-1978, Fisheries Biology, Botany minor, Phi Kappa Phi Honor Society, M.S. Louisiana State University, Baton Rouge, LA, 1972-1975, Zoology, B.S. University of Miami, Coral Gables, FL, 1971-1972, Biology, no degree. II. Professional Experience II A. Formal positions 2020 - . Harold C. and Mary D. Bold Professor of Cryptogamic Botany, Department of Integrative Biology, UT Austin. 1997 - . Director, Texas Natural Science Center/Texas Memorial Museum, University of Texas at Austin (UT Austin). 1997 - 2020. Jane and Roland Blumberg Centennial Professor of Molecular Evolution, Department of Integrative Biology, UT Austin. 1994-1996. Vice-President, Systematics and Evolutionary Biology, Academy of Natural Sciences of Philadelphia (ANSP) 1993-1997. Associate Curator, Diatom Herbarium, ANSP. 1989-1993. Assistant Curator, Diatom Herbarium, ANSP. 1988-1989. Research Assistant Professor, Graduate Faculty, Department of Botany, Louisiana State University (LSU). 1986-1988. Assistant Research Scientist, Great Lakes Research Division (GLRD), University of Michigan (UM). 1984-1986. Research Investigator, GLRD, UM. 1984. Jessup-McHenry Fellowship. Academy of Natural Sciences of Philadelphia. 1983-1984. Research Associate, Department of Oceanography, Texas A&M University. 1978-1982. Research Assistant, GLRD, UM. 1978. Research Associate, Center for Wetland Resources, LSU. 1974-1977. Research Assistant, Louisiana Cooperative Fisheries Unit, LSU. II B. Teaching Experience BIO 301M Ecology, Evolution and Society (UT Austin) BIO 370 Evolution (UT Austin) UGS 302 Texas and Water: History, Biology and the Future (UT Austin) BIO 337 Natural History of the Protists (UT Austin).
    [Show full text]
  • Book of Abstracts Keynote 1
    GEO BON OPEN SCIENCE CONFERENCE & ALL HANDS MEETING 2020 06–10 July 2020, 100 % VIRTUAL Book of Abstracts Keynote 1 IPBES: Science and evidence for biodiversity policy and action Anne Larigauderie Executive Secretary of IPBES This talk will start by a presentation of the achievements of the Intergovernmental Science-Policy Platform for Biodiversity (IPBES) during its first work programme, starting with the release of its first assessment, on Pollinators, Pollination and Food Production in 2016, and culminating with the release of the first IPBES Global Assessment of Biodiversity and Ecosystem Services in 2019. The talk will highlights some of the findings of the IPBES Global Assessment, including trends in the contributions of nature to people over the past 50 years, direct and indirect causes of biodiversity loss, and progress against the Aichi Biodiversity Targets, and some of the Sustainable Development Goals, ending with options for action. The talk will then briefly present the new IPBES work programme up to 2030, and its three new topics, and end with considerations regarding GEO BON, and the need to establish an operational global observing system for biodiversity to support the implementation of the post 2020 Global Biodiversity Framework. 1 Keynote 2 Securing Critical Natural Capital: Science and Policy Frontiers for Essential Ecosystem Service Variables Rebecca Chaplin-Kramer Stanford University, USA As governments, business, and lending institutions are increasingly considering investments in natural capital as one strategy to meet their operational and development goals sustainably, the importance of accurate, accessible information on ecosystem services has never been greater. However, many ecosystem services are highly localized, requiring high-resolution and contextually specific information—which has hindered the delivery of this information at the pace and scale at which it is needed.
    [Show full text]