Snail Production in Bayelsa State, Nigeria: Technologies, Productivity and Enhancement Measures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Costusafer Ker Gawl) Leaf and Snail (Archachatinamarginata) Slime for Potential Use As Anti-Diabetic Drug Delivery
IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 12, Issue 9 Ser. I (September. 2019), PP 08-19 www.iosrjournals.org Extraction, Phytochemical, Physicochemical and Toxicological Study of Ginger Lily (Costusafer Ker Gawl) Leaf and Snail (Archachatinamarginata) Slime for Potential Use as Anti-Diabetic Drug Delivery. Agu Matthew Onyema Department of Science Laboratory Technology (Chemistry Unit), Federal Polytechnic Bali, Taraba State, Nigeria. Corresponding Author: Agu Matthew Onyema Abstract: The leaves of Costusafer Ker Gawl., belongs to the family of Costaceae and has manifold uses in Eastern part of Nigeria, some other African countries as well as other parts of the world. Special part of this usefulness is as folk medicine in Eastern part of Nigeria for the treatment and management of a variety of human ailment, like stomach ache, swollen legs, diabetes mellitus etc. From the sequential extraction experiment conducted on Costusafer using Petroleum ether, Methanol, Acetone and water,the bioactive components was determined as well as the percentage yield. The result obtained for percentage yield of petroleum ether, methanol, acetone and water were 0.97, 6.32, 2.07 and 2.63 respectively. Investigation of the solubility profile of the snail slime indicated that it was partially soluble in distilled water at ordinary room temperature but moderately soluble at its boiling point. The snail slime was not soluble in n-hexane, petroleum ether, methanol, acetone, ethanol, aqueous ammonia, dilute and concentrated Hydrochloric acid, (HCl), Sulphuric acid (H2SO4), and Sodium Hydroxide (NaOH) at room temperature. From the physicochemical analysis of the snail slime it was observed that a high quantity of protein was present as compared to its carbohydrate and fat content. -
Middle East Journal of Science (2018) 4(1):45-51
Middle East Journal of Science (2018) 4(1):45-51 INTERNATIONAL Middle East Journal of Science ENGINEERING, (2018) 4(1): 45 - 51 SCIENCE AND EDUCATION Published online JUNE, 2018 (http://dergipark.gov.tr/mejs) GROUP doi: 10.23884/mejs.2018.4.1.06 ISSN:2536-5312 Received: January 16, 2018 Accepted: May 03, 2018 MOLLUSCS: THEIR USAGE AS NUTRITION, MEDICINE, APHRODISIAC, COSMETIC, JEWELRY, COWRY, PEARL, ACCESSORY AND SO ON FROM THE HISTORY TO TODAY İhsan EKİN1*, Rıdvan ŞEŞEN2 1Department of Energy Systems Engineering, Faculty of Engineering, Şırnak University, Şırnak, Turkey 2Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey *Correspondence: e-mail: [email protected] Abstract:The present study has evaluated the usage and properties of the mollusca phylum from the history to today. Many types of molluscs are eaten worldwide, either cooked or raw due to their rich nutritional value. Furthermore, they are used as pearl, cowry and accessory materials, for tools like household dishes, cooking pots and utensils such as a spoon, cutlery, scoops, spatulas, etc. Some of them are destructive and caused ecological damage, some serve as intermediate hosts for human parasites; some can cause damage to crops. Mollusc meat is known to be highly nutritious and salutary owing to its high content of essential amino acids, proteins, fatty acids, vitamins, and minerals. In addition, some of the bioactive compounds including antiviral, antimicrobial, antiprotozoal, antifungal, antihelminthic and anticancer products are producing by molluscs as medicines. The largest edible snail is African land snail Achatina achatina mostly consumed by African people. Molluscs were very prominent dishes during the Roman Empire due to their aphrodisiac effect. -
249 Heliciculture As a Tool for Rural Development In
HELICICULTURE AS A TOOL FOR RURAL DEVELOPMENT IN SOUTHERN TRANSYLVANIA 1 2 VOICHITA GHEOCA , LETI ȚIA OPREAN 1“Lucian Blaga” University of Sibiu, Faculty of Sciences, 2“Lucian Blaga” University of Sibiu, Faculty of Agricultural Sciences, Food Industry and Environmental Protection , 5-7 Dr. I Ra ţiu St., RO – 550012, Sibiu, Romania [email protected] ABSTRACT In Romania there is no tradition as regards the consumption of snails. After several decades of land snails populations’ exploitation for international trade, in the last decade the farming of edible snails has evolved in Romania. The expansion of this practice was encouraged by the SAPARD Program and several foreign companies, promising a quick and easily obtained benefit. About 650 snail farms were established in Romania between the years 2004-2008, most of them using the Italian method, with Helix aspersa in pastures. However, this method had proved its deficiency in the given environmental conditions, leading to high mortality rates. An autochthonous method was developed using H. pomatia , applied by farmers organized in a cooperative, and which have invested in their own processing factory in southern Transylvania, aiming to obtain valuable biologic products. Both the individual farmers and the cooperative were not able to sustain the losses registered during the first years, and find a market for their products, a situation that lead to the collapse of heliciculture in Romania. Despite the unfortunate experience, this new agricultural activity has the potential of a profitable practice in Romania, and especially in Transylvania, not just due to the demand of the European market, but also to the climatic conditions, which make possible the snail farming. -
Fauna of New Zealand Website Copy 2010, Fnz.Landcareresearch.Co.Nz
aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac -
Carbon Footprint of Heliciculture: a Case Study from an Italian Experimental Farm
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/284929489 Carbon footprint of heliciculture: A case study from an Italian experimental farm ARTICLE in AGRICULTURAL SYSTEMS · FEBRUARY 2016 Impact Factor: 2.91 · DOI: 10.1016/j.agsy.2015.11.010 READS 24 4 AUTHORS: Annachiara Forte Amalia Zucaro University of Naples Federico II University of Naples Federico II 9 PUBLICATIONS 24 CITATIONS 27 PUBLICATIONS 155 CITATIONS SEE PROFILE SEE PROFILE Gionata De Vico Angelo Fierro University of Naples Federico II University of Naples Federico II 99 PUBLICATIONS 989 CITATIONS 24 PUBLICATIONS 189 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Gionata De Vico letting you access and read them immediately. Retrieved on: 10 January 2016 Agricultural Systems 142 (2016) 99–111 Contents lists available at ScienceDirect Agricultural Systems journal homepage: www.elsevier.com/locate/agsy Carbon footprint of heliciculture: A case study from an Italian experimental farm Annachiara Forte a,⁎, Amalia Zucaro a,GionataDeVicoa, Angelo Fierro a,b a Dipartimento di Biologia, Università di Napoli Federico II, Italy b Laboratorio di Urbanistica e di Pianificazione del Territorio (LUPT), Università di Napoli Federico II, Italy article info abstract Article history: Heliciculture for food production has huge potential and new opportunities for rural development and young en- Received 18 March 2015 trepreneurs in Italy. No studies have yet been performed on the environmental performance of snail rearing Received in revised form 10 November 2015 which also might be a beneficial tool for producers. The aim of the present paper is to evaluate the impact of Accepted 18 November 2015 snail meat by a cradle-to-farm gate life cycle assessment centred on the carbon footprint (CF). -
Biology of Terrestrial Snail Secretion and Application 1
. 40(2) 356 365 (2555) KKU Sci. J. 40(2) 356-365 (2012) Biology of Terrestrial Snail Secretion and Application 1 sulfate sugar carbohydrate chains, globular soluble proteins, uronic acid oligoelements 1 . 44150 E-mail: [email protected], Tel: +66-4375-4245 357 ABSTRACT The snail mucus is excreted from the cells in the epithelium of the skin, foot and body that call pedal mucus and viscous mucus, respectively. For the purpose of adhesive locomotion, mating, hunting, and maintain moisture in hibernation, especially a thin layer of pedal mucus is secreted for crawling. Whilst, the viscous mucus are a thick layer and high concentration excreted from body skin. The viscosity of mucus is highly depends on its bipolar ion content, which can vary between species and with the physiological condition of the animal. The rate of mucus excretion is controlled by neurohormone. Snail mucus consists of a liquid, and granules. The number of granules is directly proportional to the weight of the mucus. The major biochemical component of snail mucus is a complex glycoconjugates molecules contain sulfate sugar or carbohydrate chains, globular soluble proteins, uronic acid and oligoelements. The important role of antibiotic peptide such as mucin of the snail mucus exhibited positive antibacterial activity both for the Gram positive and Gram negative bacteria. Moreover, antimicrobial peptides (AMPs) are important to immune defense by acting not only as natural antibiotics but also stimulate many elements of the immune system, including barrier repair and inflammatory cell recruitment. Currently, there are many the applications of snail mucus in various industries, such as increased skin care products and glue proteins. -
THE FESTIVUS ISSN: 0738-9388 a Publication of the San Diego Shell Club
(?mo< . fn>% Vo I. 12 ' 2 ? ''f/ . ) QUfrl THE FESTIVUS ISSN: 0738-9388 A publication of the San Diego Shell Club Volume: XXII January 11, 1990 Number: 1 CLUB OFFICERS SCIENTIFIC REVIEW BOARD President Kim Hutsell R. Tucker Abbott Vice President David K. Mulliner American Malacologists Secretary (Corres. ) Richard Negus Eugene V. Coan Secretary (Record. Wayne Reed Research Associate Treasurer Margaret Mulliner California Academy of Sciences Anthony D’Attilio FESTIVUS STAFF 2415 29th Street Editor Carole M. Hertz San Diego California 92104 Photographer David K. Mulliner } Douglas J. Eernisse MEMBERSHIP AND SUBSCRIPTION University of Michigan Annual dues are payable to San Diego William K. Emerson Shell Club. Single member: $10.00; American Museum of Natural History Family membership: $12.00; Terrence M. Gosliner Overseas (surface mail): $12.00; California Academy of Sciences Overseas (air mail): $25.00. James H. McLean Address all correspondence to the Los Angeles County Museum San Diego Shell Club, Inc., c/o 3883 of Natural History Mt. Blackburn Ave., San Diego, CA 92111 Barry Roth Research Associate Single copies of this issue: $5.00. Santa Barbara Museum of Natural History Postage is additional. Emily H. Vokes Tulane University The Festivus is published monthly except December. The publication Meeting date: third Thursday, 7:30 PM, date appears on the masthead above. Room 104, Casa Del Prado, Balboa Park. PROGRAM TRAVELING THE EAST COAST OF AUSTRALIA Jules and Carole Hertz will present a slide program on their recent three week trip to Queensland and Sydney. They will also bring a display of shells they collected Slides of the Club Christmas party will also be shown. -
(12) Patent Application Publication (10) Pub. No.: US 2013/0309296A1 Moreno González Et Al
US 2013 0309296A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0309296A1 Moreno González et al. (43) Pub. Date: Nov. 21, 2013 (54) PHARMACEUTICAL COMPOSITION AND Publication Classification DEVICE FOR PREVENTING, TREATING AND CURING ULCERS ON ADABETC FOOT (51) Int. Cl. AND OTHERWOUNDS, WHICH INCLUDES A6IL 5/44 (2006.01) SNAL SLIME FROM THE SPECIES A6IF I3/06 (2006.01) CRYPTOPHALUS ASPERSUS OR HELIX (52) U.S. Cl. ASPERSA MULLER AND CPC ............... A61L 15/44 (2013.01); A61F 13/064 PHARMACEUTICALLY ACCEPTABLE (2013.01) CARRIERS AND/OR ADDITIVES USPC .............................. 424/446; 424/547: 602/48 (57) ABSTRACT (76) Inventors: Elmo Ernesto Moreno González, Santiago (CL); Nieves Galdames Flores, The present invention is related to a pharmaceutical compo Santiago (CL) sition comprising Snail slime of Helix aspersa miller (Cryp tophalus aspersus) (5% to 50%) and marigold extract, pro (21) Appl. No.: 13/980,735 polis and/or almond oil and pharmacologically accepted additives for the prevention additives and/or pharmaceuti (22) PCT Fled: May 20, 2011 cally acceptable excipients to form a formulation of interme diate to high viscosity (200 to 1000 Pa-s). This invention also (86) PCT NO.: PCT/CL11AOOO31 relates to the use of a composition which can be formed as a S371 (c)(1), cream or a gel, is preferably soaked in gauze, and shaped as a (2), (4) Date: Jul.19, 2013 bandage or sock for the treatment and cure of diabetic foot ulcers and other severe wounds, particularly those associated (30) Foreign Application Priority Data with diabetes, gout, Lesch Nyhan syndrome or other condi tions to the skin, including, keratosis, onychomycosis, ring Jan. -
Raising Snails
NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. Update: Visit AFSIC's Snail Culture Web site. Raising Snails Special Reference Briefs Series no. SRB 96-05 Updates SRB 88-04 ISSN: 1052-536X Compiled by: Rebecca Thompson, Information Centers Branch and Sheldon Cheney, Reference Section U.S. Department of Agriculture Agricultural Research Service National Agricultural Library Beltsville, Maryland 20705-2351 Compiled for: The Alternative Farming Systems Information Center, National Agricultural Library July 1996 Web sites revised May 2008 Acknowledgement Mary Gold, Alternative Farming Systems Information Center, NAL/ARS, and Karl Schneider, Reference and User Services Branch, NAL/ARS, assisted with database searching. Ray Stevens, Alternative Farming Systems Information Center, reviewed this publication. The authors appreciate their valuable input and assistance. For additional reference sources on the many issues and techniques involved in sustainable agriculture, you may request AFSIC's List of Information Products. For a copy of this list, or for answers to questions, please contact: Alternative Farming Systems Information Center National Agricultural Library 10301 Baltimore Ave., Room 132 Beltsville MD 20705-2351 Telephone: (301) 504-6559, FAX: (301) 504-6409 Contents Introduction Edible Species Mating and Egg Laying Growth Farming Snails Farming Snails Introduction Pens and Enclosures Cannibalism by Hatchlings Gathering Snails Feeding Diseases and Pests Population Density Shipping Turning Snails into Escargot Restrictions and Regulations U.S. -
An Assessment of Snail-Farm Systems Based on Land Use and Farm Components
Article An Assessment of Snail-Farm Systems Based on Land Use and Farm Components Konstantinos Apostolou 1,* , Alexandra Staikou 2 , Smaragda Sotiraki 3 and Marianthi Hatziioannou 1,* 1 Department of Ichthyology & Aquatic Environment, Faculty of Agricultural Sciences, University of Thessaly, Fytoko Street, 38 445 Nea Ionia Magnesia, Greece 2 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 3 Veterinary Research Institute, Hellenic Agricultural Organization DEMETER, HAO Campus, 57001 Thermi, Greece; [email protected] * Correspondence: [email protected] (K.A.); [email protected] (M.H.); Tel.: +30-24210-93269 (M.H.) Simple Summary: This study’s goal was a thorough analysis and a detailed characterization of commercial snail farms in Greece, considering the unstructured development of the snail-farming sector over recent years. Additionally, the characterization of snail farms in Greece could help Southern European countries improve heliciculture. This study classifies 29 farms in five snail farming systems: elevated sections (7%), net-covered greenhouse (38%), a mixed system with a net-covered greenhouse (10%), open field (38%), and mixed system with an open field (7%). Results showed the impact of various parameters (farming system, region, equipment, and facilities) on annual production. Snail farms were dispersed in six different regions (Thrace, Central Macedonia, West Macedonia, Thessaly, Western Greece, and the Attica Islands). The location affected productivity, but also influenced the duration of operation during an annual cycle. Abstract: In this study, the structural and management characteristics of snail farms in Greece were analyzed to maximize sustainable food production. Objectives, such as the classification of farming systems and assessing the effects of various annual production parameters, were investigated. -
October, 2018 Edition
A newsletter published by the Sarasota Shell Club The Look for us at www.Sarasotashellclub.com We meet on the 2nd Thursday, 7:00 pm (September to April) Beauii at Fire Station #2, 2070 Waldemere St., Sarasota, FL October, 2018 Edition From the Prez Field Trips, 2018-2019 Greetings! 10/27/18 Boca Grande 11/10/18 Blackthorne Park, Sunshine Skywy We’ve had a great start 1/19/19 Cedar Key to the new season. If you 1/22/19 Carefree Learner attended the September 2/05/19 Carefree Learner meeting, you saw lots of 2/20/19 Carefree Learner lovely shells collected by 4/20/19 Peanut Island, West Palm Beach members over the summer. Whats in this Issue: I hope many of you will attend our field trips this President’s Message Page 1 year so you can have your own shells to show off! Featured Mollusk Page 2 Speaking of field trips, our first big trip this sea- Meet your Member Page 3 son is down to Boca Grande. Red tide should recede Article: Florida’s Land Snails Page 4-5 with the advent of cooler weather and Boca Grande Raising Snails Page 6 always boasts good shelling. I’ve found several “Slime” Page 7 beautiful Florida cones and orange scallops there and October Meeting’s Speaker Page 8 I know others have found alphabet cones and even a Historian’s Report Page 8 deer cowrie! Reserve the date now and plan to go. Shelling for Live Shells Page 9 The sign-up sheet will be at the meeting on the 11th. -
Molluscs at the Kafa Biosphere Reserve
NABU’s Biodiversity Assessment at the Kafa Biosphere Reserve, Ethiopia Molluscs at the Kafa Biosphere Reserve Thies Geertz 96 MOLLUSCS Highlights ´ As far as the author is aware, this is the first systematic assessment of terrestrial molluscs in an Ethiopian rainforest, if not the whole of Ethiopia. ´ A total of 32 species of terrestrial molluscs were recorded. ´ Knowledge of the ecology and conservation status of Ethiopian land snails is very poor at present. Further research is required to complete the checklist of land snails in the Kafa BR. ´ None of the recorded species has been assessed by the IUCN Red List. ´ Boginda Forest in the core zone was the most species-rich forest, with 16 recorded snail species. ´ Freshwater molluscan diversity is very poor in the Kafa BR, with only nine species recorded in rivers, streams and ponds. ´ One pea clam (Pisidium sp.) was discovered that is most probably new to science. Freshwater gastropods are absent from almost all investigated ponds and streams, despite seemingly good habitat conditions. This could be due to biogeographic factors or chemical water parameters and requires further research. ´ Freshwater mussels (Unionoida) would be a good indicator group for the ecosystem health of streams and rivers. ´ The carnivorous Streptaxidae are a potential indicator group for the ecological integrity of rainforests, although further research is required. ´ Molluscs face an unprecedented rate of extinction, with 83% of East African land snails restricted to the endangered rainforests. Further research and conservation measures to curb deforestation are urgently required if these species are to survive. ´ Future research should focus on identifying forest endemics in the Kafa BR, as these are potentially good indicator species and especially prone to extirpation.