University Microfilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms International 300 N SLOPE AND EXPOSURE EFFECTS ON RANGE SITE INTERPRETATIONS (ARIZONA). Item Type text; Dissertation-Reproduction (electronic) Authors MEYER, WILLIAM WALTER. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 05:41:26 Link to Item http://hdl.handle.net/10150/187181 INFORMATION TO USERS This rcproduction was madc from a copy of a documcnt scnt to us for microfilming. Whilc thc most advanccd tcchnology has bccn used to photograph and rcproduce this docLlmcnt, thc quality of the rcproduction is heavily dependcnt upon the quality of thc matcrial submittcd. Thc following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. I. The sign or "target" for pagcs apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or scction, thcy arc spliced into the film along with adjacent pages. This may havc ncccssitatcd cutting through an image and duplicating adjacent pages to assurc complete continuity. 2. When an image on thc film is obliterated with a round black mark, it is an indication of cither blurred copy because of movement during exposure, duplicate copy, or copyrigh ted matcrials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target notc will appear listing the pages in thc adjacen t framc. 3. When a map, drawing or chart, etc., is part of thc material being photographed, a dcfinite method of "sectioning" thc material has been followed. It is customary to bcgin filming at the uppcr left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If neceSSaIY, sectioning is continucd again-bcginning bclow the first row and continuing on until complete. 4. For illustrations that cannot bc satisfactorily reproducr-(\ by xerographic means, photographic prints can be purchased at additional cost and inserted into your xcrographic copy. Thcse prints arc available upon request from the Disscrta tions Customcr Scrviccs Dcpartmcn 1. 5. Somc pagcs in any docLlmcnt may have indistinct print. In all cases the best available copy has bccn filmcd. University Microfilms International 300 N. Zeeb Road Ann Arbor, MI481 06 8324458 Meyer, William Walter SLOPE AND EXPOSURE EFFECTS ON RANGE SITE INTERPRETATIONS The University of Arizona PH.D. 1983 University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check marl<_..,I_. 1. Glossy photographs or pages ~ 2. Colored illustrations, paper or print __ 3. Photographs with darl< background __ 4. Illustrations are poor copy __ 5. Pages with black marks, not original copy ___ 6. Print shows through as there is text on both sides of page __ 7. Indistinct, broken or small print on several pages __ 8. Print exceeds margin requirements __ 9. Tightly bound copy with print lost in spine __ 10. Computer printout pages with indistinct print __ 11. Page(s) lacl<ing when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages __ 15. Other______________________________________________________ _ University Microfilms International SLOPE AND EXPOSURE EFFECTS ON RANGE SITE INTERPRETATIONS by William Walter Meyer A Dissertation Submitted to the Faculty of the SCHOOL OF RENEWABLE NATURAL RESOURCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN RANGE MANAGEMENT In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 8 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Committe~, we certify that we have read the dissertation prepared qy William Walter Meyer entitled Slope and Exposure Effects on Range Site Interpretations and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy Date ,. /1"'j 3 4 !lhV;, 4V.v/ - 7 Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the diss~rtation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation reqUire~ry. ) ;;jf/c. (J,,'/Cs- Dissertation Direc20r Date ( STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfill­ ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledge­ ment of source is made. Requests for permission for extended quotation from or reproduction of "this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: ;Jj ~, DEDICATION This dissertation is dedicated to my dad, Walter F. Meyer, and all the other "brush poppin! old codgers who put the old cow down the hill. TT iii ACKNOWLEDGMENTS The completion of this dissertation is a tribute to the continued support and guidance of a dear friend, my advisor, Dr. Phil R. Ogden. To Phil, I graciously express my deepest appreciation. May our friendship be everlasting. I give my loving thanks to my wife, Francie, and my four range management girls, Lilah, Jenny, Katie, and Nickie. With­ out their love and support, this degree would be meaningless. Thanks is not adequate in expressing my appreciation for the friendships that I have gained through the years with the members of my guidance committee, Dr. E. Lamar Smith, Dr. Gilbert L. Jordan, Dr. Jack L. Stroehlein, and Dr. David M. Hendricks. To these men, thank you for your friendship and support. Special thanks go to Dr. Donald (Dee) Post. His support and proddings throughout the years are immensely appreciated. Grateful appreciation is expressed to Dr. Milo L. Cox and Dr. Jon J. Norris for their review and support on my gradu­ ate committee. Special expressions of love are due to my mother, Anna Meyer, for all the hard work she has done so that I could go to school. iv v Special thanks go to Rita Mikula for her efforts in typ­ ing the final draft of this manuscript. Thanks to Raymundo Aguirre, a good friend who provided his expertise in the use of the "complicator." To all these people and more, I am deeply indebted. TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS viii LIST OF TABLES xi ABSTRACT xiii 1. INTRODUCTION 1 2. DESCRIPTION OF THE STUDY AREA 3 3. LITERATURE REVIEW . 6 4. METHODS AND PROCEDURES 15 Sampling Design • •• .•.•. 15 General Range Site and Soil Series Selection . • • • • • • • • • . • . 17 Climatological Zones . • . • 18 Vegetational Communities Samples . • . 19 Selection of Aspect Subsamples 22 Reflectance and Soil Temperature 22 Soil Descriptions . 25 Vegetational Sampling • . • • . • 26 Statistical Analysis •. • . • . 28 Analysis of Variance . 29 Cluster and Ordination Analyses 30 5. RESULTS AND DISCUSSION 31 Climate and Soil Climate 31 Potential Insolation . • . 32 Precipitation . • 34 Reflectance . • . 37 Soil Temperatures . 40 Soil Moisture . • . 55 Environments • • . 55 Soils and Soil Factors 58 Vegetational Composition and Species Relationships • . • • • • • . • . 64 Sample Location Vegetation 64 Subsample Communities • . 68 vi vii TABLE OF CONTENTS--Continued Page Vegetational Associations . 83 Biotopes ... 0 • • • • • • • • • • 95 Individual Species • . • • . • . 98 Climate, Soils, and Plant Relationships. 107 6. CONCLUSIONS III APPENDIX A: SOIL CLIMATE DATA 114 APPENDIX B: SOIL PROFILE DESCRIPTIONS 119 APPENDIX C: CHI-SQUARE MATRICES 125 SELECTED BIBLIOGRAPHY . • • 130 LIST OF ILLUSTRATIONS Figure Page 1. A general map of Arizona showing approximate sample locations • • • . • • 4 2. Sample design showing the terminology and relationships among sample units 16 3. Typical view of a northern exposure on the Schrap 1 sample location . 20 4. Typical view of a north-northeastern exposure on the Chiricahua 4 sample location . • . 20 5. Typical view of an east-southeastern exposure on the Schrap 2 sample location • . • • • 21 6. Typical view of an eastern exposure on the Schrap 3 sample location 21 7. Total annual incident radiation for all subs ample sites within the four sample locations • • • . • . • 33 8. Total midfall through midspring potential insolations on all exposures with 25% slope in the study area . • • . 35 9. Annual rainfall pattern analysis of the two rainfall stations located near the sample sites with analysis based on the 'past 35 year record for both stations . • 36 10. Mean percent soil surface reflectance for the study sample locations 38 11. Mean annual and seasonal soil temperatures at 5 cm depth for the four sample locations 41 12. Mean winter soil temperatures for all exposures within the four sample locations 42 viii ix LIST OF ILLUSTRATIONS--Continued Figure Page 13. Mean spring soil temperatures on all exposures within the four sample locations . • . 44 14. Mean summer soil temperatures on all exposures within the four sample locations ••• • • 46 15. Mean fall soil temperatures on all exposures within the four sample locations •• • • 47 16. Mean annual soil temperatures for all exposures within the four sample locations •• • • • 52 17. Dendrograph of the 64 subs ample sites within the four sample locations .
Recommended publications
  • Research Paper a Review of Goji Berry (Lycium Barbarum) in Traditional Chinese Medicine As a Promising Organic Superfood And
    Academia Journal of Medicinal Plants 6(12): 437-445, December 2018 DOI: 10.15413/ajmp.2018.0186 ISSN: 2315-7720 ©2018 Academia Publishing Research Paper A review of Goji berry (Lycium barbarum) in Traditional Chinese medicine as a promising organic superfood and superfruit in modern industry Accepted 3rd December, 2018 ABSTRACT Traditional Chinese Medicine (TCM) has been used for thousands of years by different generations in China and other Asian countries as foods to promote good health and as drugs to treat disease. Goji berry (Lycium barbarum), as a Chinese traditional herb and food supplement, contains many nutrients and phytochemicals, such as polysaccharides, scopoletin, the glucosylated precursor, amino acids, flaconoids, carotenoids, vitamins and minerals. It has positive effects on anitcancer, antioxidant activities, retinal function preservation, anti-diabetes, immune function and anti-fatigue. Widely used in traditional Chinese medicine, Goji berries can be sold as a dietary supplement or classified as nutraceutical food due to their long and safe traditional use. Modern Goji pharmacological actions improve function and enhance the body ,s ability to adapt to a variety of noxious stimuli; it significantly inhibits the generation and spread of cancer cells and can improve eyesight and increase reserves of muscle and liver glycogens which may increase human energy and has anti-fatigue effect. Goji berries may improve brain function and enhance learning and memory. It may boost the body ,s adaptive defences, and significantly reduce the levels of serum cholesterol and triglyceride, it may help weight loss and obesity and treats chronic hepatitis and cirrhosis. At Mohamad Hesam Shahrajabian1,2, Wenli present, they are considered functional food with many beneficial effects, which is Sun1,2 and Qi Cheng1,2* why they have become more popular recently, especially in Europe, North America and Australia, as they are considered as superfood with highly nutritive and 1 Biotechnology Research Institute, antioxidant properties.
    [Show full text]
  • Sonorensis 2009
    sonorensis Arizona-Sonora Desert Museum contents r e t h c a h c S h s o J Newsletter Volume 29, Number 1 1 Introduction Winter 2009 By Christine Conte, Ph.D. The Arizona-Sonora Desert Museum 2 Diet and Health: An Intimate Connection a Co-founded in 1952 by í c r By Mark Dimmitt, Ph.D. a G Arthur N. Pack and William H. Carr s ú s e J t t i m m i D k r a Robert J. Edison M Executive Director 4 Linking Human and Environmental Health through Desert Foods By Gary Nabhan,Ph.D., Martha Ames Burgess & Laurie Monti, Ph.D. Christine Conte, Ph.D. Director, Center for Sonoran n a s e Desert Studies r K r TOCA, Tohono O’odham Community Action, e t 9 e P Creating Hope and Health with Richard C. Brusca, Ph.D. Traditional Foods Senior Director, Science and Conservation By Mary Paganelli A C O 12 Ancient Seeds for Modern Needs: T Linda M. Brewer Growing Your Own Editing By Suzanne Nelson, Ph.D. 13 On our Grounds: Wild Edibles at the Martina Clary Arizona-Sonora Desert Musuem Design and Production r e By George Montgomery, Kim Duffek & Julie Hannan Wiens d n e v e D n a V . R . sonorensis is published by the Arizona-Sonora Desert Museum, T 2021 N. Kinney Road, Tucson, Arizona 85743. ©2009 by the Arizona-Sonora Desert Museum, Inc. All rights reserved. 16 Sabores Sin Fronteras/Flavors Without Borders: Fruit Diversity in Desert Agriculture No material may be reproduced in whole or in part without prior Offers Resilience in the Face of Climate Change written permission by the publisher.
    [Show full text]
  • Pima County Plant List (2020) Common Name Exotic? Source
    Pima County Plant List (2020) Common Name Exotic? Source McLaughlin, S. (1992); Van Abies concolor var. concolor White fir Devender, T. R. (2005) McLaughlin, S. (1992); Van Abies lasiocarpa var. arizonica Corkbark fir Devender, T. R. (2005) Abronia villosa Hariy sand verbena McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon abutiloides Shrubby Indian mallow Devender, T. R. (2005) Abutilon berlandieri Berlandier Indian mallow McLaughlin, S. (1992) Abutilon incanum Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); Van Abutilon malacum Yellow Indian mallow Devender, T. R. (2005) Abutilon mollicomum Sonoran Indian mallow McLaughlin, S. (1992) Abutilon palmeri Palmer Indian mallow McLaughlin, S. (1992) Abutilon parishii Pima Indian mallow McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon parvulum Dwarf Indian mallow Herbarium; ASU Vascular Plant Herbarium Abutilon pringlei McLaughlin, S. (1992) McLaughlin, S. (1992); UA Abutilon reventum Yellow flower Indian mallow Herbarium; ASU Vascular Plant Herbarium McLaughlin, S. (1992); Van Acacia angustissima Whiteball acacia Devender, T. R. (2005); DBGH McLaughlin, S. (1992); Van Acacia constricta Whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); Van Acacia greggii Catclaw acacia Devender, T. R. (2005) Acacia millefolia Santa Rita acacia McLaughlin, S. (1992) McLaughlin, S. (1992); Van Acacia neovernicosa Chihuahuan whitethorn acacia Devender, T. R. (2005) McLaughlin, S. (1992); UA Acalypha lindheimeri Shrubby copperleaf Herbarium Acalypha neomexicana New Mexico copperleaf McLaughlin, S. (1992); DBGH Acalypha ostryaefolia McLaughlin, S. (1992) Acalypha pringlei McLaughlin, S. (1992) Acamptopappus McLaughlin, S. (1992); UA Rayless goldenhead sphaerocephalus Herbarium Acer glabrum Douglas maple McLaughlin, S. (1992); DBGH Acer grandidentatum Sugar maple McLaughlin, S. (1992); DBGH Acer negundo Ashleaf maple McLaughlin, S.
    [Show full text]
  • Copyright Notice
    Copyright Notice This electronic reprint is provided by the author(s) to be consulted by fellow scientists. It is not to be used for any purpose other than private study, scholarship, or research. Further reproduction or distribution of this reprint is restricted by copyright laws. If in doubt about fair use of reprints for research purposes, the user should review the copyright notice contained in the original journal from which this electronic reprint was made. ARTICLE IN PRESS Journal of Arid Environments Journal of Arid Environments 62 (2005) 413–426 www.elsevier.com/locate/jnlabr/yjare Functional morphology of a sarcocaulescent desert scrub in the bay of La Paz, Baja California Sur, Mexico$ M.C. Pereaa,Ã, E. Ezcurrab, J.L. Leo´ n de la Luzc aFacultad de Ciencias Naturales, Universidad Nacional de Tucuma´n, Biologia Miguel Lillo 205, 4000 San Miguel de Tucuma´n, Tucuma´n, Argentina bInstituto Nacional de Ecologı´a, Me´xico, D.F. 04530, Me´xico cCentro de Investigaciones Biolo´gicas del Noroeste, La Paz, Baja California Sur 23000, Me´xico Received 9 August 2004; received in revised form 4 January 2005; accepted 12 January 2005 Available online 22 April 2005 Abstract A functional morphology study of a sarcocaulescent scrub in the Baja California peninsula was performed with the goal of identifying plant functional types. We sampled 11 quadrats in three distinct physiographic units within the sarcocaulescent scrub ecoregion: the open scrub, the clustered scrub, and the closed scrub. We found 41 perennial species, which we characterized using 122 morphology-functional characteristics, corresponding to vegetative parts (stem and leaf), reproductive parts (flower and fruit), and functional phases (phenology, pollination, and dispersion).
    [Show full text]
  • A Fljeristic SURVJ I'm
    A FLJeRISTIC SURVJ i'M DISTRIBUTION OF THIS OOCUMEKT IS UNLMTEQ "SoelNtfttMA-- l^t A FLORISTIC SURVEY OF YUCCA MOUNTAIN AND VICINITY NYE COUNTY, NEVADA by Wesley E. Niles Patrick J. Leary James S. Holland Fred H. Landau December, 1995 Prepared for U. S. Department of Energy, Nevada Operations Office under Contract No. DE/NV DE-FC08-90NV10872 MASTER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi• bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer• ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom• mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCS-AIMER Portions <ff this document may lie illegible in electronic image products. Images are produced from the best available original document ABSTRACT A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas.
    [Show full text]
  • Approved Plant Palette: Horseshoe Canyon
    Section Twelve HORSESHOE CANYON HORSESHOE CANYON APPROVED PLANT LIST Zone Legend N = Native Nt = Native Transition S = Semi-Private P = Private TREES Botanical Name Common Name Zones Acacia abyssinica Abyssinian Acacia S,P Acacia aneura Mulga S,P Acacia berlandieri Berlandier Acacia S,P Acacia constricta Whitethorn Acacia S,P Acacia greggii Catclaw Acacia N,Nt,S,P Acacia pendula Pendulous Acacia S,P Acacia roemeriana Roemer Acacia S,P Acacia saligna Blue-Leaf Wattle S,P Acacia schaffneri Twisted Acacia S,P Acacia smallii (farnesiana) Sweet Acacia Nt,S,P Acacia willardiana Palo Blanco Nt,S,P Bauhinia congesta Anacacho Orchid Tree S,P Caesalpinia cacalaco Cascalote S,P Caesalpinia mexicana Mexican Bird of Paradise Nt,S,P Canotia holacantha Crucifi xion Thorn N,Nt,S,P Cercidium ‘Desert Museum’ Hybrid Palo Verde S,P Cercidium fl oridum Blue Palo Verde N,Nt,S,P Cercidium microphyllum Foothills Palo Verde N,Nt,S,P Cercis canadensis v. mexicana Mexican Redbud S,P Chilopsis linearis Desert Willow Nt,S,P Cordia boissieri Anacahuita S,P Forestiera neomexicana Desert Olive S,P Fraxinus greggii Littleleaf Ash P Leucaena retusa Golden Ball Lead Tree S,P Lysiloma microphylla v. thornberi Desert Fern Nt,S,P Olneya tesota Ironwood N,Nt,S,P Pithecellobium fl exicaule Texas Ebony S,P Pithecellobium mexicanum Mexican Ebony Nt,S,P Prosopis alba Argentine Mesquite S,P Prosopis chilensis Chilean Mesquite S,P Prosopis glandulosa v. glandulosa Texas Honey Mesquite Nt,S,P Prosopis pubescens Screwbean Mesquite Nt,S,P Prosopis velutina Velvet Mesquite N,Nt,S,P Quercus gambelii Gambel Oak P Robinia neomexicana New Mexico Locust S,P Sophora secundifl ora Texas Mountain Laurel S,P Ungnadia speciosa Mexican Buckeye S,P Vitex angus-castus Chaste Tree S,P The Horseshoe Canyon Approved Plant List is subject to change without notification.
    [Show full text]
  • Celtis Pallida, Desert Hackberry
    Celtis pallida, Desert Hackberry Category: Shrub Characteristics & Culture Description Size (H x W) 12 feet x 8 feet Sonoran Desert MVP. This dense, evergreen, thorny shrub screens unwelcome views. Sonoran Yes, Tucson basin and Provides food and shelter to numerous species Desert Native? mountains of birds, insects and other wildlife. Abundant Native 1500-4000’ orange fruits in the fall are edible by humans Elevation and wildlife. Hardiness 10 degrees F Photo inset: American snout butterfly Bloom Season Spring depositing eggs on hackberry Blossom Inconspicuous Seasonality May drop leaves after severe freeze Exposure Full sun to partial shade Soils Tolerant - most soil types are acceptable Water Low - benefits from water harvesting Pruning None Growth Rate Moderate with irrigation Reseeds Readily Photo inset: Wildlife Benefits Verdin nest in hackberry Butterfly Empress leila, Hackberry Larval Host emperor, Tawny emperor, Plant American snout Moth Larval Small prominent moth, Host Plant Randa’s eyed silk moth Nectar Plant Native pollinators Shelter / Essential habitat plant for Nesting Site / native birds and wildlife. Nest Materials Dense, thorny shrub for Birds provides safe nesting and refuge. Food for Birds Abundant orange fruits in fall feed numerous species of native birds. Credit: Information is from observation as well as research compiled by Desert Survivors Native Plant Nursery (a great source for native plants in Tucson, AZ). © Copyright by Wilder Landscape Architects 2019 | wilderla.com | 520-320-3936 | [email protected] Lycium fremontii, Wolfberry Category: Shrub Characteristics & Culture Description Size (H x W) 8 feet x 10 feet Sonoran desert MVP. An important source of food and shelter for wildlife.
    [Show full text]
  • Floristic Surveys of Saguaro National Park Protected Natural Areas
    Floristic Surveys of Saguaro National Park Protected Natural Areas William L. Halvorson and Brooke S. Gebow, editors Technical Report No. 68 United States Geological Survey Sonoran Desert Field Station The University of Arizona Tucson, Arizona USGS Sonoran Desert Field Station The University of Arizona, Tucson The Sonoran Desert Field Station (SDFS) at The University of Arizona is a unit of the USGS Western Ecological Research Center (WERC). It was originally established as a National Park Service Cooperative Park Studies Unit (CPSU) in 1973 with a research staff and ties to The University of Arizona. Transferred to the USGS Biological Resources Division in 1996, the SDFS continues the CPSU mission of providing scientific data (1) to assist U.S. Department of Interior land management agencies within Arizona and (2) to foster cooperation among all parties overseeing sensitive natural and cultural resources in the region. It also is charged with making its data resources and researchers available to the interested public. Seventeen such field stations in California, Arizona, and Nevada carry out WERC’s work. The SDFS provides a multi-disciplinary approach to studies in natural and cultural sciences. Principal cooperators include the School of Renewable Natural Resources and the Department of Ecology and Evolutionary Biology at The University of Arizona. Unit scientists also hold faculty or research associate appointments at the university. The Technical Report series distributes information relevant to high priority regional resource management needs. The series presents detailed accounts of study design, methods, results, and applications possibly not accommodated in the formal scientific literature. Technical Reports follow SDFS guidelines and are subject to peer review and editing.
    [Show full text]
  • Approved Plant Species (By Watershed) for Use in Riparian Mitigation Areas, Pima County, Arizona
    APPROVED PLANT SPECIES (BY WATERSHED) FOR USE IN RIPARIAN MITIGATION AREAS, PIMA COUNTY, ARIZONA Western Pima County Botanical Name Common Name Life Form Water Requirements HYDRORIPARIAN TREES Celtis laevigata (Celtis reticulata) Netleaf/Canyon hackberry Perennial Tree Moderate Populus fremontii ssp. fremontii Fremont cottonwood Perennial Tree High Salix gooddingii Goodding’s willow Perennial Tree High SHRUBS Celtis ehrenbergiana (Celtis pallida) Desert hackberry, spiny hackberry Perennial Shrub Low GRASSES Plains bristlegrass, large-spike Setaria macrostachya Perennial Bunchgrass Moderate bristlegrass Sporobolus airoides Alkali sacaton Perennial Bunchgrass Moderate MESORIPARIAN TREES Acacia constricta Whitethorn Acacia Perennial shrub/small tree Low-moderate Acacia greggii Catclaw Acacia Perennial Tree Low Celtis laevigata (Celtis reticulata) Netleaf/Canyon hackberry Perennial Tree Moderate Chilopsis linearis Desert Willow Perennial Tree Moderate Parkinsonia florida Blue Palo Verde Perennial Tree Low- Moderate Populus fremontii ssp. fremontii Fremont cottonwood Perennial Tree High Prosopis pubescens Screwbean mesquite Perennial Tree Moderate Prosopis velutina Velvet mesquite Perennial Tree Low Salix gooddingii Goodding’s willow Perennial Tree High SHRUBS Anisacanthus thurberi (Drejera thurberi) Desert honeysuckle Perennial Shrub Moderate Celtis ehrenbergiana (Celtis pallida) Desert hackberry, spiny hackberry Perennial Shrub Low Lycium andersonii var. andersonii Anderson Wolfberry, water jacket Perennial Shrub Low Fremont Wolfberry, Fremont's
    [Show full text]
  • List of Approved Plants
    APPENDIX "X" – PLANT LISTS Appendix "X" Contains Three (3) Plant Lists: X.1. List of Approved Indigenous Plants Allowed in any Landscape Zone. X.2. List of Approved Non-Indigenous Plants Allowed ONLY in the Private Zone or Semi-Private Zone. X.3. List of Prohibited Plants Prohibited for any location on a residential Lot. X.1. LIST OF APPROVED INDIGENOUS PLANTS. Approved Indigenous Plants may be used in any of the Landscape Zones on a residential lot. ONLY approved indigenous plants may be used in the Native Zone and the Revegetation Zone for those landscape areas located beyond the perimeter footprint of the home and site walls. The density, ratios, and mix of any added indigenous plant material should approximate those found in the general area of the native undisturbed desert. Refer to Section 8.4 and 8.5 of the Design Guidelines for an explanation and illustration of the Native Zone and the Revegetation Zone. For clarity, Approved Indigenous Plants are considered those plant species that are specifically indigenous and native to Desert Mountain. While there may be several other plants that are native to the upper Sonoran Desert, this list is specific to indigenous and native plants within Desert Mountain. X.1.1. Indigenous Trees: COMMON NAME BOTANICAL NAME Blue Palo Verde Parkinsonia florida Crucifixion Thorn Canotia holacantha Desert Hackberry Celtis pallida Desert Willow / Desert Catalpa Chilopsis linearis Foothills Palo Verde Parkinsonia microphylla Net Leaf Hackberry Celtis reticulata One-Seed Juniper Juniperus monosperma Velvet Mesquite / Native Mesquite Prosopis velutina (juliflora) X.1.2. Indigenous Shrubs: COMMON NAME BOTANICAL NAME Anderson Thornbush Lycium andersonii Barberry Berberis haematocarpa Bear Grass Nolina microcarpa Brittle Bush Encelia farinosa Page X - 1 Approved - February 24, 2020 Appendix X Landscape Guidelines Bursage + Ambrosia deltoidea + Canyon Ragweed Ambrosia ambrosioides Catclaw Acacia / Wait-a-Minute Bush Acacia greggii / Senegalia greggii Catclaw Mimosa Mimosa aculeaticarpa var.
    [Show full text]
  • Hybridization in Compositae
    Hybridization in Compositae Dr. Edward Schilling University of Tennessee Tennessee – not Texas, but we still grow them big! [email protected] Ayres Hall – University of Tennessee campus in Knoxville, Tennessee University of Tennessee Leucanthemum vulgare – Inspiration for school colors (“Big Orange”) Compositae – Hybrids Abound! Changing view of hybridization: once consider rare, now known to be common in some groups Hotspots (Ellstrand et al. 1996. Proc Natl Acad Sci, USA 93: 5090-5093) Comparison of 5 floras (British Isles, Scandanavia, Great Plains, Intermountain, Hawaii): Asteraceae only family in top 6 in all 5 Helianthus x multiflorus Overview of Presentation – Selected Aspects of Hybridization 1. More rather than less – an example from the flower garden 2. Allopolyploidy – a changing view 3. Temporal diversity – Eupatorium (thoroughworts) 4. Hybrid speciation/lineages – Liatrinae (blazing stars) 5. Complications for phylogeny estimation – Helianthinae (sunflowers) Hybrid: offspring between two genetically different organisms Evolutionary Biology: usually used to designated offspring between different species “Interspecific Hybrid” “Species” – problematic term, so some authors include a description of their species concept in their definition of “hybrid”: Recognition of Hybrids: 1. Morphological “intermediacy” Actually – mixture of discrete parental traits + intermediacy for quantitative ones In practice: often a hybrid will also exhibit traits not present in either parent, transgressive Recognition of Hybrids: 1. Morphological “intermediacy” Actually – mixture of discrete parental traits + intermediacy for quantitative ones In practice: often a hybrid will also exhibit traits not present in either parent, transgressive 2. Genetic “additivity” Presence of genes from each parent Recognition of Hybrids: 1. Morphological “intermediacy” Actually – mixture of discrete parental traits + intermediacy for quantitative ones In practice: often a hybrid will also exhibit traits not present in either parent, transgressive 2.
    [Show full text]
  • Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona. Part 20
    Felger, R.S. and S. Rutman. 2016. Ajo Peak to Tinajas Altas: A Flora of Southwestern Arizona. Part 20. Eudicots: Solanaceae to Zygophyllaceae. Phytoneuron 2016-52: 1–66. Published 4 August 2016. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA PART 20. EUDICOTS: SOLANACEAE TO ZYGOPHYLLACEAE RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & International Sonoran Desert Alliance PO Box 687 Ajo, Arizona 85321 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 [email protected] ABSTRACT A floristic account is provided for Solanaceae, Talinaceae, Tamaricaceae, Urticaceae, Verbenaceae, and Zygophyllaceae as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona—the heart of the Sonoran Desert. This account includes 40 taxa, of which about 10 taxa are represented by fossil specimens from packrat middens. This is the twentieth contribution for this flora, published in Phytoneuron and also posted open access on the website of the University of Arizona Herbarium: <http//cals.arizona.edu/herbarium/content/flora-sw-arizona>. Six eudicot families are included in this contribution (Table 1): Solanaceae (9 genera, 21 species), Talinaceae (1 species), Tamaricaceae (1 genus, 2 species), Urticaceae (2 genera, 2 species), Verbenaceae (4 genera, 7 species), and Zygophyllaceae (4 genera, 7 species). The flora area covers 5141 km 2 (1985 mi 2) of contiguous protected areas in the heart of the Sonoran Desert (Figure 1). The first article in this series includes maps and brief descriptions of the physical, biological, ecological, floristic, and deep history of the flora area (Felger et al.
    [Show full text]