95 Investigating Development Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phenotypic and Molecular Analysis of Desensitization to Levamisole in Male and Female Adult Brugia Malayi
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Phenotypic and molecular analysis of desensitization to levamisole in male and female adult Brugia malayi Mengisteab T. Wolday Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Toxicology Commons Recommended Citation Wolday, Mengisteab T., "Phenotypic and molecular analysis of desensitization to levamisole in male and female adult Brugia malayi" (2019). Graduate Theses and Dissertations. 17809. https://lib.dr.iastate.edu/etd/17809 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phenotypic and molecular analysis of desensitization to levamisole in male and female adult Brugia malayi by Mengisteab Wolday A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Toxicology Program of Study Committee: Richard J. Martin, Major Professor Alan P. Robertson Aileen F. Keating The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Mengisteab Wolday, 2019. All rights reserved. ii DEDICATION This Thesis research is dedicated to my loving and caring parents Tesfaldet Wolday and Mizan Teckleab, and my siblings Mussie, Selam, Daniel, Yonas, Alek and Abraham, and my son Yosias. -
Expression, Purification, and Inhibition Profile of Dihydrofolate Reductase from the Filarial Nematode Wuchereria Bancrofti
Montclair State University Montclair State University Digital Commons Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works Department of Chemistry and Biochemistry 5-2018 Expression, Purification, and Inhibition Profile of Dihydrofolate Reductase from the Filarial Nematode Wuchereria Bancrofti Andrew M. Tobias Montclair State University, [email protected] Dea Toska Montclair State University, [email protected] Keith Lange Montclair State University, [email protected] Tyler Eck Montclair State University, [email protected] Rohit Bhat Montclair State University See next page for additional authors Follow this and additional works at: https://digitalcommons.montclair.edu/chem-biochem-facpubs Part of the Biochemistry Commons MSU Digital Commons Citation Tobias, Andrew M.; Toska, Dea; Lange, Keith; Eck, Tyler; Bhat, Rohit; Janson, Cheryl A.; Rotella, David P.; Gubler, Ueli; and Goodey, Nina M., "Expression, Purification, and Inhibition Profile of Dihydrofolate Reductase from the Filarial Nematode Wuchereria Bancrofti" (2018). Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works. 3. https://digitalcommons.montclair.edu/chem-biochem-facpubs/3 This Article is brought to you for free and open access by the Department of Chemistry and Biochemistry at Montclair State University Digital Commons. It has been accepted for inclusion in Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works by an authorized administrator of Montclair State University Digital Commons. For more information, please contact [email protected]. Authors Andrew M. Tobias, Dea Toska, Keith Lange, Tyler Eck, Rohit Bhat, Cheryl A. Janson, David P. Rotella, Ueli Gubler, and Nina M. Goodey This article is available at Montclair State University Digital Commons: https://digitalcommons.montclair.edu/chem- biochem-facpubs/3 RESEARCH ARTICLE Expression, purification, and inhibition profile of dihydrofolate reductase from the filarial nematode Wuchereria bancrofti Andrew M. -
Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication
Tropical Medicine and Infectious Disease Review Mosquitoes and the Lymphatic Filarial Parasites: Research Trends and Budding Roadmaps to Future Disease Eradication Damilare O. Famakinde ID Department of Medical Microbiology and Parasitology, College of Medicine of the University of Lagos, Idi-Araba, Lagos 100254, Nigeria; [email protected]; Tel.: +234-703-330-2069 Received: 18 December 2017; Accepted: 27 December 2017; Published: 4 January 2018 Abstract: The mosquito-borne lymphatic filariasis (LF) is a parasitic, neglected tropical disease that imposes an unbearable human scourge. Despite the unprecedented efforts in mass drug administration (MDA) and morbidity management, achieving the global LF elimination slated for the year 2020 has been thwarted by limited MDA coverage and ineffectiveness in the chemotherapeutic intervention. Moreover, successful and sustainable elimination of mosquito-vectored diseases is often encumbered by reintroduction and resurgence emanating from human residual or new infections being widely disseminated by the vectors even when chemotherapy proves effective, but especially in the absence of effective vaccines. This created impetus for strengthening the current defective mosquito control approach, and profound research in vector–pathogen systems and vector biology has been pushing the boundaries of ideas towards developing refined vector-harnessed control strategies. Eventual implementation of these emerging concepts will offer a synergistic approach that will not only accelerate LF elimination, but also -
Brugia Pahangi
RESEARCH ARTICLE Efficacy of subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on male jirds (Meriones unguiculatus) infected with the filarial nematode Brugia pahangi Chelsea Fischer1, Iosune Ibiricu Urriza1, Christina A. Bulman1, KC Lim1, Jiri Gut1, a1111111111 Sophie Lachau-Durand2, Marc Engelen2, Ludo Quirynen2, Fetene Tekle2, Benny Baeten2, 3 4 1 a1111111111 Brenda Beerntsen , Sara Lustigman , Judy SakanariID * a1111111111 a1111111111 1 Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America, 2 Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium, 3 Veterinary a1111111111 Pathobiology, University of Missouri-Columbia, Columbia, Missouri, United States of America, 4 Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America * [email protected] OPEN ACCESS Citation: Fischer C, Ibiricu Urriza I, Bulman CA, Lim K, Gut J, Lachau-Durand S, et al. (2019) Efficacy of Abstract subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on River blindness and lymphatic filariasis are two filarial diseases that globally affect millions male jirds (Meriones unguiculatus) infected with of people mostly in impoverished countries. Current mass drug administration programs rely the filarial nematode Brugia pahangi. PLoS Negl on drugs that primarily target the microfilariae, which are released from adult female worms. Trop Dis 13(1): e0006787. https://doi.org/10.1371/ journal.pntd.0006787 The female worms can live for several years, releasing millions of microfilariae throughout the course of infection. Thus, to stop transmission of infection and shorten the time to elimi- Editor: Roger K. -
Filarial Genomics Steven A
Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 11-2004 Filarial Genomics Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Williams, Steven A., "Filarial Genomics" (2004). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/45 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] GLOBAL PROGRAM TO ELIMINATE LF 37 3.3 FILARIAL GENOMICS Steven A. Williams Summary of Prioritized Research Needs but few genes were cloned and identified. By the end of 1994, only 60 Brugia genes had been submitted to the Genbank 1) Collecting materials database. It was clear that a new approach for studying the a) Before the opportunity is lost to preserve their ge- filarial genome was needed to make rapid progress in under- nomes, collect geographically representative isolates of standing the biology and biochemistry of these parasites. The the various species and strains of the human filarial genome project approach represented a complete departure parasites, from the way parasite genes had been studied in the past. 2) Constructing libraries Genome projects are typically not directed at the identifica- a) Construct updated and additional genomic and cDNA tion of individual genes, but instead at the identification, clon- libraries to represent completely the different stages ing, and sequencing of all the organism’s genes. and species of filarial parasites, At the first meeting of the Filarial Genome Project (1994), 3) Sequencing B. -
Susceptibility in Armigeres Subalbatus
Mosquito Transcriptome Profiles and Filarial Worm Susceptibility in Armigeres subalbatus Matthew T. Aliota1, Jeremy F. Fuchs1, Thomas A. Rocheleau1, Amanda K. Clark2, Julia´n F. Hillyer2, Cheng- Chen Chen3, Bruce M. Christensen1* 1 Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America, 3 Department of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan Authority Abstract Background: Armigeres subalbatus is a natural vector of the filarial worm Brugia pahangi, but it kills Brugia malayi microfilariae by melanotic encapsulation. Because B. malayi and B. pahangi are morphologically and biologically similar, comparing Ar. subalbatus-B. pahangi susceptibility and Ar. subalbatus-B. malayi refractoriness could provide significant insight into recognition mechanisms required to mount an effective anti-filarial worm immune response in the mosquito, as well as provide considerable detail into the molecular components involved in vector competence. Previously, we assessed the transcriptional response of Ar. subalbatus to B. malayi, and now we report transcriptome profiling studies of Ar. subalbatus in relation to filarial worm infection to provide information on the molecular components involved in B. pahangi susceptibility. Methodology/Principal Findings: Utilizing microarrays, comparisons were made between mosquitoes exposed -
The Distribution of Lectins Across the Phylum Nematoda: a Genome-Wide Search
Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S1 of S12 Supplementary Materials: The Distribution of Lectins across the Phylum Nematoda: A Genome-Wide Search Lander Bauters, Diana Naalden and Godelieve Gheysen Figure S1. Alignment of partial calreticulin/calnexin sequences. Amino acids are represented by one letter codes in different colors. Residues needed for carbohydrate binding are indicated in red boxes. Sequences containing all six necessary residues are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S2 of S12 Figure S2. Alignment of partial legume lectin-like sequences. Amino acids are represented by one letter codes in different colors. EcorL is a legume lectin originating from Erythrina corallodenron, used in this alignment to compare carbohydrate binding sites. The residues necessary for carbohydrate interaction are shown in red boxes. Nematode lectin-like sequences containing at least four out of five key residues are indicated with an asterisk. Figure S3. Alignment of possible Ricin-B lectin-like domains. Amino acids are represented by one letter codes in different colors. The key amino acid residues (D-Q-W) involved in carbohydrate binding, which are repeated three times, are boxed in red. Sequences that have at least one complete D-Q-W triad are indicated with an asterisk. Int. J. Mol. Sci. 2017, 18, 91; doi:10.3390/ijms18010091 S3 of S12 Figure S4. Alignment of possible LysM lectins. Amino acids are represented by one letter codes in different colors. Conserved cysteine residues are marked with an asterisk under the alignment. The key residue involved in carbohydrate binding in an eukaryote is boxed in red [1]. -
Lymphatic Filariasis
BiologyPUBLIC HEALTH IMPORTANCE 29 In areas with low or moderate transmission of malaria, in those with advanced health services with well trained and experienced personnel, and in priority areas such as those with development projects, attempts may be made to reduce the prevalence of malaria by community-wide mosquito control measures. In areas subject to epidemic risk, quick-acting and timely vector control mea- sures, such as insecticide spraying, play an important role in the control or prevention of epidemics. Apart from the input of health services in the planning and management of activities, it is also important for communities to participate in control efforts. Sufficient resources have to be ensured for the long-term maintenance of improve- ments obtained. In developed countries with advanced professional capabilities and sufficient resources, it is possible to aim at a countrywide eradication of malaria. Eradication has been achieved in southern Europe, most Caribbean islands, the Maldives, large parts of the former USSR and the USA. As most anopheline mosquitos enter houses to bite and rest, malaria control programmes have focused primarily on the indoor application of residual insecti- cides to the walls and ceilings of houses. House spraying is still important in some tropical countries but in others its significance is diminishing because of a number of problems (see Chapter 9), which, in certain areas, have led to the interruption or termination of malaria control programmes. There has been increased interest in other control methods that would avoid some of the problems related to house spraying. Methods that are less costly and easier to organize, such as community-wide use of impregnated bednets, and methods that bring about long- lasting or permanent improvements by eliminating breeding places are now being increasingly considered. -
The Invasion and Encapsulation of the Entomopathogenic Nematode, Steinernema Abbasi, in Aedes Albopictus (Diptera: Culicidae) Larvae
insects Article The Invasion and Encapsulation of the Entomopathogenic Nematode, Steinernema abbasi, in Aedes albopictus (Diptera: Culicidae) Larvae 1, , 1, 1 2 1, Wei-Ting Liu y z , Tien-Lai Chen y, Roger F. Hou , Cheng-Chen Chen and Wu-Chun Tu * 1 Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan; [email protected] (W.-T.L.); [email protected] (T.-L.C.); [email protected] (R.F.H.) 2 Department of Tropical Medicine, National Yang-Ming University, Taipei 112, Taiwan; [email protected] * Correspondence: [email protected] Contributed equally to this paper. y Present address: Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, z Taipei 112, Taiwan. Received: 25 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: The Asian tiger mosquito, Aedes albopictus, is widely considered to be one of the most dangerous vectors transmitting human diseases. Meanwhile, entomopathogenic nematodes (EPNs) have been applied for controlling insect pests of agricultural and public health importance for years. However, infection of mosquitoes with the infective juveniles (IJs) of terrestrial-living EPNs when released to aquatic habitats needs further investigated. In this study, we observed that a Taiwanese isolate of EPN, Steinernema abbasi, could invade through oral route and then puncture the wall of gastric caecum to enter the body cavity of Ae. albopictus larvae. The nematode could complete infection of mosquitoes by inserting directly into trumpet, the intersegmental membrane of the cuticle, and the basement of the paddle of pupae. After inoculation of mosquito larvae with nematode suspensions, the invading IJs in the hemocoel were melanized and encapsulated and only a few larvae were able to survive to adult emergence. -
Product Sheet Info
Product Information Sheet for NR-48902 Stage L4 Brugia pahangi Larvae (Frozen) Citation: Acknowledgment for publications should read “The following Catalog No. NR-48902 reagent was provided by the NIH/NIAID Filariasis Research Reagent Resource Center for distribution by BEI Resources, This reagent is the tangible property of the U.S. Government. NIAID, NIH: Stage L4 Brugia pahangi Larvae (Frozen), NR- 48902.” For research use only. Not for human use. Biosafety Level: 2 Contributor: Appropriate safety procedures should always be used with Andrew R. Moorhead, D.V.M., M.S., Ph.D., Director and this material. Laboratory safety is discussed in the following Principal Investigator, Filariasis Research Reagent Resource publication: U.S. Department of Health and Human Services, Center, Department of Infectious Diseases University of Public Health Service, Centers for Disease Control and Georgia College of Veterinary Medicine Athens, Georgia, Prevention, and National Institutes of Health. Biosafety in USA Microbiological and Biomedical Laboratories. 5th ed. Washington, DC: U.S. Government Printing Office, 2009; see Manufacturer: www.cdc.gov/biosafety/publications/bmbl5/index.htm. Filariasis Research Reagent Resource Center supported by Contract HHSN272201000030I, NIH-NIAID Animal Models of Disclaimers: Infectious Disease Program You are authorized to use this product for research use only. It is not intended for human use. Product Description: Classification: Onchocercidae, Brugia Use of this product is subject to the terms and conditions of Species: Brugia pahangi the BEI Resources Material Transfer Agreement (MTA). The Strain: FR3 MTA is available on our Web site at www.beiresources.org. Original Source: Brugia pahangi (B. pahangi), strain FR3 was originally obtained from researchers in Malaysia by While BEI Resources uses reasonable efforts to include Dr. -
Gene Expression in the Microfilariae of Brugia Pahangi
GENE EXPRESSION IN THE MICROFILARIAE OF BRUGIA PAHANGI RICHARD DAVID EMES A thesis submitted for the degree of Doctor of Philosophy Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Glasgow University June 2000 © Richard D Ernes 2000 ProQuest Number: 13818964 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818964 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY 1184 3 COPH \ To Mum and Dad With love and thanks. List of Contents Page List of Contents i Declaration xi Acknowledgements xii Abbreviations xiv List of Figures xvi Abstract xxii Chapter 1 Introduction. Page 1.1 The parasite. 1 1.1.1 Filarial nematodes. 1 1.1.2 Life cycle. 2 1.2 The human disease. 4 1.2.1 Clinical spectrum of disease. 4 1.2.2 Diagnosis and treatment of lymphatic filariasis. 6 1.2.3 Control of lymphatic filariasis. 8 1.3 The microfilariae. 9 1.3.1 Periodicity of the mf. 9 1.3.2 Non-continuous development of filarial nematodes. 11 1.3.3 The microfilarial sheath. -
Natural Products As a Source for Treating Neglected Parasitic Diseases
Int. J. Mol. Sci. 2013, 14, 3395-3439; doi:10.3390/ijms14023395 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Natural Products as a Source for Treating Neglected Parasitic Diseases Dieudonné Ndjonka 1,†, Ludmila Nakamura Rapado 2,†, Ariel M. Silber 2, Eva Liebau 3,* and Carsten Wrenger 2,* 1 Department of Biological Sciences, Faculty of Science, University of Ngaoundere, B. P. 454, Cameroon; E-Mail: [email protected] 2 Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil; E-Mails: [email protected] (L.N.R.); [email protected] (A.M.S.) 3 Institute for Zoophysiology, Schlossplatz 8, D-48143 Münster, Germany † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.L.); [email protected] (C.W.); Tel.: +49-251-83-21710 (E.L.); +55-11-3091-7335 (C.W.); Fax: +49-251-83-21766 (E.L.); +55-11-3091-7417 (C.W.). Received: 21 December 2012; in revised form: 12 January 2013 / Accepted: 16 January 2013 / Published: 6 February 2013 Abstract: Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available.