International Journal of Molecular Sciences Review From Menopause to Neurodegeneration—Molecular Basis and Potential Therapy Yu-Jung Cheng 1,2, Chieh-Hsin Lin 3,4,5,6,* and Hsien-Yuan Lane 3,4,7,8,* 1 Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan;
[email protected] 2 Department of Rehabilitation, China Medical University Hospital, Taichung 40402, Taiwan 3 Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan 4 Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan 5 Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan 6 School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan 7 Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan 8 Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan * Correspondence:
[email protected] (C.-H.L.);
[email protected] (H.-Y.L.); Tel.: +886-7-7317123 (ext. 8753) (C.-H.L.); Fax: +886-7-7326817 (C.-H.L.) Abstract: The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the ther- apeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Citation: Cheng, Y.-J.; Lin, C.-H.; Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly de- Lane, H.-Y.