Mifepristone Treatment Promotes Testicular Leydig Cell Tumor Progression in Transgenic Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Peripheral Nervous System……………………………………………….9
PhD School in Integrative Biomedical Research Department of Pharmacological and Biomolecular Sciences Curriculum: Neuroscience Molecular basis for the development of innovative therapies for peripheral neuropathies treatment: role and cross-regulation of the GABAergic system and neuroactive steroids SDD BIO/09 - Physiology Luca Franco Castelnovo Badge number R10402 PhD Tutor: Prof. Valerio Magnaghi PhD School Coordinator: Prof. Chiarella Sforza Academic year 2015/2016 INDEX Abstract…………………………………………………………………...page 1 Abbreviations list…………………………………………………………….....5 Introduction………………………………………………………………….....8 Peripheral nervous system……………………………………………….9 General concepts……………...……….……………………………........……..9 Sensory system and nociceptive fibers.………………..………….…………..12 Schwann cells and myelination……….……..………………...………………15 Peripheral neuropathies…….…………………………………………...26 General concepts……………………………………………………...……….26 Neuropathic pain……………………………………...……………………….27 Nerve regeneration…………………………………………………………….28 The GABAergic system………….……………………………………...32 GABA……………….…………………………………………………..……..32 GABA-A receptors…………………………………………………………….33 GABA-B receptors…………………………………………………………….42 GABAergic system in the peripheral nervous system…………………………47 Protein kinase C – type ε……………………….………………………..51 General concepts…………………………………………………….…………51 Cross-talk with allopregnanolone and GABA-A………………………………54 Neuroactive steroids…………......………………………………………57 General concepts…………………………………….…………………………57 Mechanism of action…………………………….……………………………..59 Progesterone derivatives………………………………….……………………60 -
The VLDL Receptor Regulates Membrane Progesterone Receptor
© 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs212522. doi:10.1242/jcs.212522 RESEARCH ARTICLE The VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling Nancy Nader, Maya Dib, Raphael Courjaret, Rawad Hodeify, Raya Machaca, Johannes Graumann and Khaled Machaca* ABSTRACT the plasma membrane and interact with the classical P4 receptor, is Progesterone mediates its physiological functions through activation of nonetheless effective at mediating non-genomic P4 signaling both transcription-coupled nuclear receptors and seven-pass- (Bandyopadhyay et al., 1998; Dressing et al., 2011; Peluso et al., transmembrane progesterone receptors (mPRs), which transduce 2002). These results argued for the presence of membrane P4 the rapid non-genomic actions of progesterone by coupling to various receptors that are distinct from the nuclear P4 receptors. In 2003, the signaling modules. However, the immediate mechanisms of action Thomas laboratory identified a family of membrane progesterone downstream of mPRs remain in question. Herein, we use an untargeted receptors (mPRs) from fish ovaries (Zhu et al., 2003a,b) that belong quantitative proteomics approach to identify mPR interactors to better to the progestin and adiponectin (AdipoQ) receptor family (also define progesterone non-genomic signaling. Surprisingly, we identify named PAQ receptors). However, the signal transduction cascade the very-low-density lipoprotein receptor (VLDLR) as an mPRβ downstream of mPRs that mediates the non-genomic actions of P4 (PAQR8) partner that is required for mPRβ plasma membrane remains unclear. localization. Knocking down VLDLR abolishes non-genomic The non-genomic action of mPR and the ensuing signaling progesterone signaling, which is rescued by overexpressing VLDLR. -
Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences, -
The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells. -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
Progesterone – Friend Or Foe?
Frontiers in Neuroendocrinology 59 (2020) 100856 Contents lists available at ScienceDirect Frontiers in Neuroendocrinology journal homepage: www.elsevier.com/locate/yfrne Progesterone – Friend or foe? T ⁎ Inger Sundström-Poromaaa, , Erika Comascob, Rachael Sumnerc, Eileen Ludersd,e a Department of Women’s and Children’s Health, Uppsala University, Sweden b Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden c School of Pharmacy, University of Auckland, New Zealand d School of Psychology, University of Auckland, New Zealand e Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA ARTICLE INFO ABSTRACT Keywords: Estradiol is the “prototypic” sex hormone of women. Yet, women have another sex hormone, which is often Allopregnanolone disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its Emotion metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on Hormonal contraceptives mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way Postpartum depression for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual Premenstrual dysphoric disorder dysphoric disorder as well as contraception that women can use without risking mental health problems are still Progesterone needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative. Introduction 1. -
Caracterització De L'efecte De Compostos Naturals En Models In
Caracterització de l’efecte de compostos naturals en models in vitro i in vivo de càncer de còlon Susana Sánchez Tena ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. -
Expression of Progesterone Receptor Membrane Component 1 (PGRMC1
Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 8065830, 12 pages http://dx.doi.org/10.1155/2016/8065830 Research Article Expression of Progesterone Receptor Membrane Component 1 (PGRMC1), Progestin and AdipoQ Receptor 7 (PAQPR7), and Plasminogen Activator Inhibitor 1 RNA-Binding Protein (PAIRBP1) in Glioma Spheroids In Vitro Juraj Hlavaty,1 Reinhard Ertl,2 Ingrid Miller,3 and Cordula Gabriel1 1 Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, 1210 Vienna, Austria 2VetCORE, Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria 3Institute of Medical Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria Correspondence should be addressed to Cordula Gabriel; [email protected] Received 27 January 2016; Revised 14 April 2016; Accepted 27 April 2016 Academic Editor: Emeline Tabouret Copyright © 2016 Juraj Hlavaty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. Some effects of progesterone on glioma cells can be explained through the slow, genomic mediated response via nuclear receptors; the other effects suggest potential role of a fast, nongenomic action mediated by membrane-associated progesterone receptors. Methods. The effects of progesterone treatment on the expression levels of progesterone receptor membrane component 1 (PGRMC1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1), and progestin and adipoQ receptor 7 (PAQR7) on both mRNA and protein levels were investigated in spheroids derived from human glioma cell lines U-87 MG and LN-229. Results. The only significant alteration at the transcript level was the decrease in PGRMC1 mRNA observed in LN-229 spheroids treated with 30 ng/mL of progesterone. -
G Protein-Coupled Receptors Function As Cell Membrane Receptors for the Steroid Hormone 20-Hydroxyecdysone Xiao-Fan Zhao
Zhao Cell Communication and Signaling (2020) 18:146 https://doi.org/10.1186/s12964-020-00620-y REVIEW Open Access G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone Xiao-Fan Zhao Abstract G protein-coupled receptors (GPCRs) are cell membrane receptors for various ligands. Recent studies have suggested that GPCRs transmit animal steroid hormone signals. Certain GPCRs have been shown to bind steroid hormones, for example, G protein-coupled estrogen receptor 1 (GPER1) binds estrogen in humans, and Drosophila dopamine/ecdysteroid receptor (DopEcR) binds the molting hormone 20-hydroxyecdysone (20E) in insects. This review summarizes the research progress on GPCRs as animal steroid hormone cell membrane receptors, including the nuclear and cell membrane receptors of steroid hormones in mammals and insects, the 20E signaling cascade via GPCRs, termination of 20E signaling, and the relationship between genomic action and the nongenomic action of 20E. Studies indicate that 20E induces a signal via GPCRs to regulate rapid cellular responses, including rapid Ca2+ release from the endoplasmic reticulum and influx from the extracellular medium, as well as rapid protein phosphorylation and subcellular translocation. 20E via the GPCR/Ca2+/PKC/signaling axis and the GPCR/cAMP/PKA- signaling axis regulates gene transcription by adjusting transcription complex formation and DNA binding activity. GPCRs can bind 20E in the cell membrane and after being isolated, suggesting GPCRs as cell membrane receptors of 20E. This review deepens our understanding of GPCRs as steroid hormone cell membrane receptors and the GPCR-mediated signaling pathway of 20E (20E-GPCR pathway), which will promote further study of steroid hormone signaling via GPCRs, and presents GPCRs as targets to explore new pharmaceutical materials to treat steroid hormone-related diseases or control pest insects. -
Human Chorionic Gonadotropin Increases Serum Progesterone, Number of Corpora Lutea and Angiogenic Factors in Pregnant Sheep
REPRODUCTIONRESEARCH Human chorionic gonadotropin increases serum progesterone, number of corpora lutea and angiogenic factors in pregnant sheep Megan P T Coleson*, Nicole S Sanchez*, Amanda K Ashley, Timothy T Ross and Ryan L Ashley Department of Animal and Range Sciences, New Mexico State University, PO Box 30003, MSC 3I, Las Cruces, New Mexico 88003, USA Correspondence should be addressed to R L Ashley; Email: [email protected] *(M P T Coleson and N S Sanchez contributed equally to this work) Abstract Early gestation is a critical period when implantation and placental vascularization are established, processes influenced by progesterone (P4). Although human chorionic gonadotropin (hCG) is not endogenously synthesized by livestock, it binds the LH receptor, stimulating P4 synthesis. We hypothesized treating pregnant ewes with hCG would increase serum P4, number of corpora lutea (CLs) and concepti, augment steroidogenic enzymes, and increase membrane P4 receptors (PAQRs) and angiogenic factors in reproductive tissues. The objective was to determine molecular alterations induced by hCG in pregnant sheep that may promote pregnancy. Ewes received either 600 IU of hCG or saline i.m. on day 4 post mating. Blood samples were collected daily from day 0 until tissue collection for serum P4 analysis. Reproductive tissues were collected on either day 13 or 25 of gestation and analyzed for PAQRs, CXCR4, proangiogenic factors and steroidogenic enzymes. Ewes receiving hCG had more CL and greater serum P4, which remained elevated. On day 25, StAR protein production decreased in CL from hCG-treated ewes while HSD3B1 was unchanged; further, expression of CXCR4 significantly increased and KDR tended to increase. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
Sex Steroids Regulate Skin Pigmentation Through Nonclassical
RESEARCH ARTICLE Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors Christopher A Natale1, Elizabeth K Duperret1, Junqian Zhang1, Rochelle Sadeghi1, Ankit Dahal1, Kevin Tyler O’Brien2, Rosa Cookson2, Jeffrey D Winkler2, Todd W Ridky1* 1Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 2Department of Chemistry, University of Pennsylvania, Philadelphia, United States Abstract The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17b-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics. DOI: 10.7554/eLife.15104.001 *For correspondence: ridky@mail.