Novel Progestin Signaling Molecules in the Brain: Distribution, Regulation and Molecular Mechanism of Action

Total Page:16

File Type:pdf, Size:1020Kb

Novel Progestin Signaling Molecules in the Brain: Distribution, Regulation and Molecular Mechanism of Action University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-13-2011 Novel Progestin Signaling Molecules in the Brain: Distribution, Regulation and Molecular Mechanism of Action Karlie A. Intlekofer University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Molecular and Cellular Neuroscience Commons Recommended Citation Intlekofer, Karlie A., "Novel Progestin Signaling Molecules in the Brain: Distribution, Regulation and Molecular Mechanism of Action" (2011). Open Access Dissertations. 366. https://scholarworks.umass.edu/open_access_dissertations/366 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. NOVEL PROGESTIN SIGNALING MOLECULES IN THE BRAIN: DISTRIBUTION, REGULATION AND MOLECULAR MECHANISM OF ACTION A Dissertation Presented by KARLIE A. INTLEKOFER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Neuroscience and Behavior Program © Copyright by Karlie A. Intlekofer 2011 All Rights Reserved NOVEL PROGESTIN SIGNALING MOLECULES IN THE BRAIN: DISTRIBUTION, REGULATION AND MOLECULAR MECHANISM OF ACTION A Dissertation Presented by KARLIE A. INTLEKOFER Approved as to style and content by: _____________________________________ Sandra L. Petersen, Chair ______________________________________ John J. Peluso, Member ______________________________________ Pablo E. Visconti, Member _______________________________________ Rolf O. Karlstrom, Member __________________________________________ Jerry Meyer, Department Head Neuroscience and Behavior Program DEDICATION To Mom, Dad, Dan, Adrien, Jay and my closest friends, for their love and support ACKNOWLEDGMENTS I would like to thank Dr. Sandy Petersen, who has served as a supportive mentor and guided me through the doctorate and publishing process. Sandy has provided invaluable insight into my work while allowing me to explore many different techniques and approaches. Her ability to provide a challenging and creative work environment have allowed me to grow as a researcher and as an individual. I would like to thank my labmates, past and present, in the Petersen lab: Eser Yilmaz, Sudha Krishnan, Leah Aggison, Evelyn Santos, Sarah Fadden, Jinyan Cao, Lan Ji, Michael Cunningham, and Drs. Maristela Poletini, Paula Moura, Javier Del Pino and Kay Son. I give special thanks to Ted Hudgens, who taught me important techniques and shared ideas and advice. I am also very thankful for Michael Cunningham, Paula Moura, Leah Aggison and Emily Merchasin for their unwaning friendship and support. I am very grateful to Dr. Thomas Zoeller and members of his laboratory. In particular, Dave Sharlin, Judy Brewer, Ruby Bansal and Stephanie Giera have provided helpful insights that have aided in producing this work. I also want to recognize fellow NSB graduate students Bryan Olson, Carrie Mahoney, Patrick Taylor and Thalia Gilbert for helpful insight and support, as well as thought-provoking discussions and laughter. I am thankful to Drs. John J. Peluso, Pablo Visconti and Rolf Karlstrom for their generous gift of time and expertise as committee members. I thank the Neuroscience and Behavior Program for providing a diverse research environment and their help and support in completing this work. Finally, I thank SAPAI and all associated staff for their support in organizing and writing this document. v ABSTRACT NOVEL PROGESTIN SIGNALING MOLECULES IN THE BRAIN: DISTRIBUTION, REGULATION AND MOLECULAR MECHANISM OF ACTION MAY 2011 KARLIE A. INTLEKOFER, BS. COLORADO STATE UNIVERSITY Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Sandra L. Petersen Progesterone regulates female reproduction in many ways, yet it is still unclear how signals are conveyed through nuclear and extranuclear receptors. The traditional notion was that progesterone binds classical progesterone receptors to alter gene transcription. This view has been challenged by the discovery of additional progesterone signaling molecules important for progesterone actions in non-neural cells. In granulosa cells, the progesterone receptor membrane component 1 (Pgrmc1) mediates progesterone effects by forming a receptor complex with binding partner, Serpine mRNA binding protein 1, but it is unknown whether these molecules function similarly in the brain. To begin to address these issues, I investigated the neural role of Pgrmc1 in female mouse brain, rat brain and in neural cells. By examining the neuroanatomical localization, hormonal regulation, and colocalization of Pgrmc1 within key neurons in the neural control of ovulation, Pgrmc1 emerged as a candidate signaling molecule likely to mediate progesterone functions. Furthermore, Pgrmc1 levels regulate the expression of several diverse genes and signaling pathways in neural cells. Taken together, these results demonstrate that Pgrmc1 function is likely to impact diverse neural functions. vi TABLE OF CONTENTS Page ABSTRACT .................................................................................................................... vi LIST OF TABLES ......................................................................................................... xiv LIST OF FIGURES ........................................................................................................ xv CHAPTER 1. PROGESTIN MECHANISM OF ACTION IN THE CNS ......................................... 1 1.1 Introduction ..................................................................................................... 1 1.2 Sources and Synthesis ..................................................................................... 1 1.2.1 Progesterone Biosynthetic Pathway ................................................. 2 1.3 Effects of P 4 in the Central Nervous System .................................................. 4 1.3.1 Neuroprotection ............................................................................... 4 1.3.2 Reproductive Functions ................................................................... 5 1.4 The Classical Progesterone Receptor (Pgr) .................................................... 7 1.5 Progesterone Receptor Membrane Component-1 (Pgrmc1) ........................... 9 1.6 References ..................................................................................................... 13 2. DISTRIBUTION OF MRNAS ENCODING CLASSICAL PROGESTIN RECEPTOR, PROGESTERONE MEMBRANE COMPONENTS 1 AND 2, SERPINE MRNA BINDING PROTEIN 1, AND PROGESTIN AND ADIPOQ RECEPTOR FAMILY MEMBERS 7 AND 8 IN RAT FOREBRAIN ............................................... 24 2.1 Abstract ......................................................................................................... 24 2.2 Introduction ................................................................................................... 25 2.3 Materials and Methods .................................................................................. 27 2.3.1 Animals and Tissue Preparation .................................................... 27 2.3.2 Probe Preparation ........................................................................... 28 vii 2.3.3 ISHH .............................................................................................. 28 2.3.4 Validation of probe specificity....................................................... 29 2.3.5 Data Analysis ................................................................................. 30 2.4 Results ........................................................................................................... 31 2.4.1 Probe Specificity ............................................................................ 31 2.4.2 Distribution of Pgrmc1, Serbp1, Pgrmc2, Paqr7, Paqr8 and Pgr mRNAs ....................................................................................... 31 2.4.3 Diencephalon ................................................................................. 31 2.4.4 Telencephalon ................................................................................ 32 2.5 Discussion ..................................................................................................... 33 2.6 List of Tables ................................................................................................ 40 2.6.1 Sequences for Oligodeoxynucleotidyl Probes Used in ISHH Studies ............................................................................................... 40 2.6.2 Oligodeoxynucleotidyl Sequences for ISHH Validation Studies ............................................................................................... 41 2.6.3 Localization and Abundance of mRNA encoding Pgr, Pgrmc1, Serbp1, Pgrmc2, Paqr7 and Paqr8 in Female Rat Forebrain 1 .......................................................................................... 41 2.7 List of Figures 2.7.1 Photomicrographs of ISHH............................................................ 43 2.7.2 Photomicrographs of ISHH............................................................ 44 2.7.3 Photomicrographs of ISHH............................................................ 45 2.8 References ....................................................................................................
Recommended publications
  • Progesterone Receptor Membrane Component 1 Promotes Survival of Human Breast Cancer Cells and the Growth of Xenograft Tumors
    Cancer Biology & Therapy ISSN: 1538-4047 (Print) 1555-8576 (Online) Journal homepage: http://www.tandfonline.com/loi/kcbt20 Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru To cite this article: Nicole C. Clark, Anne M. Friel, Cindy A. Pru, Ling Zhang, Toshi Shioda, Bo R. Rueda, John J. Peluso & James K. Pru (2016) Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors, Cancer Biology & Therapy, 17:3, 262-271, DOI: 10.1080/15384047.2016.1139240 To link to this article: http://dx.doi.org/10.1080/15384047.2016.1139240 Accepted author version posted online: 19 Jan 2016. Published online: 19 Jan 2016. Submit your article to this journal Article views: 49 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kcbt20 Download by: [University of Connecticut] Date: 26 May 2016, At: 11:28 CANCER BIOLOGY & THERAPY 2016, VOL. 17, NO. 3, 262–271 http://dx.doi.org/10.1080/15384047.2016.1139240 RESEARCH PAPER Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors Nicole C. Clarka,*, Anne M. Frielb,*, Cindy A. Prua, Ling Zhangb, Toshi Shiodac, Bo R. Ruedab, John J. Pelusod, and James K. Prua aDepartment of Animal Sciences,
    [Show full text]
  • PGRMC1 and PGRMC2 in Uterine Physiology and Disease
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector PERSPECTIVE ARTICLE published: 19 September 2013 doi: 10.3389/fnins.2013.00168 PGRMC1 and PGRMC2 in uterine physiology and disease James K. Pru* and Nicole C. Clark Department of Animal Sciences, School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA Edited by: It is clear from studies using progesterone receptor (PGR) mutant mice that not all of Sandra L. Petersen, University of the actions of progesterone (P4) are mediated by this receptor. Indeed, many rapid, Massachusetts Amherst, USA non-classical P4 actions have been reported throughout the female reproductive tract. Reviewed by: Progesterone treatment of Pgr null mice results in behavioral changes and in differential Cecily V. Bishop, Oregon National Primate Research Center, USA regulation of genes in the endometrium. Progesterone receptor membrane component Christopher S. Keator, Ross (PGRMC) 1 and PGRMC2 belong to the heme-binding protein family and may serve as University School of Medicine, P4 receptors. Evidence to support this derives chiefly from in vitro culture work using Dominica primary or transformed cell lines that lack the classical PGR. Endometrial expression of *Correspondence: PGRMC1 in menstrual cycling mammals is most abundant during the proliferative phase James K. Pru, Department of Animal Sciences, School of Molecular of the cycle. Because PGRMC2 expression shows the most consistent cross-species Biosciences, Center for expression, with highest levels during the secretory phase, PGRMC2 may serve as a Reproductive Biology, Washington universal non-classical P4 receptor in the uterus.
    [Show full text]
  • Progesterone – Friend Or Foe?
    Frontiers in Neuroendocrinology 59 (2020) 100856 Contents lists available at ScienceDirect Frontiers in Neuroendocrinology journal homepage: www.elsevier.com/locate/yfrne Progesterone – Friend or foe? T ⁎ Inger Sundström-Poromaaa, , Erika Comascob, Rachael Sumnerc, Eileen Ludersd,e a Department of Women’s and Children’s Health, Uppsala University, Sweden b Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden c School of Pharmacy, University of Auckland, New Zealand d School of Psychology, University of Auckland, New Zealand e Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, USA ARTICLE INFO ABSTRACT Keywords: Estradiol is the “prototypic” sex hormone of women. Yet, women have another sex hormone, which is often Allopregnanolone disregarded: Progesterone. The goal of this article is to provide a comprehensive review on progesterone, and its Emotion metabolite allopregnanolone, emphasizing three key areas: biological properties, main functions, and effects on Hormonal contraceptives mood in women. Recent years of intensive research on progesterone and allopregnanolone have paved the way Postpartum depression for new treatment of postpartum depression. However, treatment for premenstrual syndrome and premenstrual Premenstrual dysphoric disorder dysphoric disorder as well as contraception that women can use without risking mental health problems are still Progesterone needed. As far as progesterone is concerned, we might be dealing with a two-edged sword: while its metabolite allopregnanolone has been proven useful for treatment of PPD, it may trigger negative symptoms in women with PMS and PMDD. Overall, our current knowledge on the beneficial and harmful effects of progesterone is limited and further research is imperative. Introduction 1.
    [Show full text]
  • Progesterone Receptor Membrane Component 1 Suppresses the P53
    www.nature.com/scientificreports OPEN Progesterone Receptor Membrane Component 1 suppresses the p53 and Wnt/β-catenin pathways to Received: 30 October 2017 Accepted: 2 February 2018 promote human pluripotent stem Published: xx xx xxxx cell self-renewal Ji Yea Kim1, So Young Kim1, Hong Seo Choi1, Min Kyu Kim1, Hyun Min Lee1, Young-Joo Jang2 & Chun Jeih Ryu1 Progesterone receptor membrane component 1 (PGRMC1) is a multifunctional heme-binding protein involved in various diseases, including cancers and Alzheimer’s disease. Previously, we generated two monoclonal antibodies (MAbs) 108-B6 and 4A68 against surface molecules on human pluripotent stem cells (hPSCs). Here we show that PGRMC1 is the target antigen of both MAbs, and is predominantly expressed on hPSCs and some cancer cells. PGRMC1 is rapidly downregulated during early diferentiation of hPSCs. Although PGRMC1 knockdown leads to a spread-out morphology and impaired self-renewal in hPSCs, PGRMC1 knockdown hPSCs do not show apoptosis and autophagy. Instead, PGRMC1 knockdown leads to diferentiation of hPSCs into multiple lineage cells without afecting the expression of pluripotency markers. PGRMC1 knockdown increases cyclin D1 expression and decreases Plk1 expression in hPSCs. PGRMC1 knockdown also induces p53 expression and stability, suggesting that PGRMC1 maintains hPSC self-renewal through suppression of p53-dependent pathway. Analysis of signaling molecules further reveals that PGRMC1 knockdown promotes inhibitory phosphorylation of GSK-3β and increased expression of Wnt3a and β-catenin, which leads to activation of Wnt/β-catenin signaling. The results suggest that PGRMC1 suppresses the p53 and Wnt/β-catenin pathways to promote self-renewal and inhibit early diferentiation in hPSCs.
    [Show full text]
  • Expression of Progesterone Receptor Membrane Component 1 (PGRMC1
    Hindawi Publishing Corporation BioMed Research International Volume 2016, Article ID 8065830, 12 pages http://dx.doi.org/10.1155/2016/8065830 Research Article Expression of Progesterone Receptor Membrane Component 1 (PGRMC1), Progestin and AdipoQ Receptor 7 (PAQPR7), and Plasminogen Activator Inhibitor 1 RNA-Binding Protein (PAIRBP1) in Glioma Spheroids In Vitro Juraj Hlavaty,1 Reinhard Ertl,2 Ingrid Miller,3 and Cordula Gabriel1 1 Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine, 1210 Vienna, Austria 2VetCORE, Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria 3Institute of Medical Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria Correspondence should be addressed to Cordula Gabriel; [email protected] Received 27 January 2016; Revised 14 April 2016; Accepted 27 April 2016 Academic Editor: Emeline Tabouret Copyright © 2016 Juraj Hlavaty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. Some effects of progesterone on glioma cells can be explained through the slow, genomic mediated response via nuclear receptors; the other effects suggest potential role of a fast, nongenomic action mediated by membrane-associated progesterone receptors. Methods. The effects of progesterone treatment on the expression levels of progesterone receptor membrane component 1 (PGRMC1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1), and progestin and adipoQ receptor 7 (PAQR7) on both mRNA and protein levels were investigated in spheroids derived from human glioma cell lines U-87 MG and LN-229. Results. The only significant alteration at the transcript level was the decrease in PGRMC1 mRNA observed in LN-229 spheroids treated with 30 ng/mL of progesterone.
    [Show full text]
  • PGRMC1 Phosphorylation Status and Cell Plasticity 1: Glucose Metabolism, Mitochondria
    bioRxiv preprint doi: https://doi.org/10.1101/737718; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title PGRMC1 phosphorylation status and cell plasticity 1: glucose metabolism, mitochondria, and mouse xenograft tumorigenesis Authors Bashar M. Thejer,1,2,3 Partho P. Adhikary,1,2,4 Amandeep Kaur,5,6 Sarah L. Teakel,1 Ashleigh Van Oosterum,7 Ishith Seth,1 Marina Pajic,8,9 Kate M. Hannan,10,11 Megan Pavy,11 Perlita Poh,11 Jalal A. Jazayeri,1 Thiri Zaw,12 Dana Pascovici,12 Marina Ludescher,13 Michael Pawlak,14 Juan C. Cassano,15 Lynne Turnbull,16 Mitra Jazayeri,17 Alexander C. James,18,19,20 Craig P. Coorey,18,21 Tara L. Roberts,18,19,20,21 Simon J. Kinder,22 Ross D. Hannan,9,10,23,24,25 Ellis Patrick,26 Mark P. Molloy,12,27 Elizabeth J. New,5 Tanja N. Fehm,13 Hans Neubauer,13 Ewa M. Goldys,28,29 Leslie A. Weston,30,31 and Michael A. Cahill.1,10,* Affiliations 1. School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia. 2. Co-first author. 3. Department of Biology, College of Science, University of Wasit, Wasit, Iraq. 4. Current address: Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada. 5. University of Sydney, School of Chemistry, Sydney, NSW, 2006 Australia.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Sex Steroids Regulate Skin Pigmentation Through Nonclassical
    RESEARCH ARTICLE Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors Christopher A Natale1, Elizabeth K Duperret1, Junqian Zhang1, Rochelle Sadeghi1, Ankit Dahal1, Kevin Tyler O’Brien2, Rosa Cookson2, Jeffrey D Winkler2, Todd W Ridky1* 1Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 2Department of Chemistry, University of Pennsylvania, Philadelphia, United States Abstract The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17b-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics. DOI: 10.7554/eLife.15104.001 *For correspondence: ridky@mail.
    [Show full text]
  • Membrane Progesterone Receptor Beta (Mprβ/Paqr8) Promotes
    www.nature.com/scientificreports OPEN Membrane progesterone receptor beta (mPRβ/Paqr8) promotes progesterone-dependent neurite Received: 19 December 2016 Accepted: 30 May 2017 outgrowth in PC12 neuronal cells Published: xx xx xxxx via non-G protein-coupled receptor (GPCR) signaling Mayu Kasubuchi1, Keita Watanabe1, Kanako Hirano2, Daisuke Inoue2, Xuan Li1, Kazuya Terasawa3, Morichika Konishi4, Nobuyuki Itoh2 & Ikuo Kimura1 Recently, sex steroid membrane receptors garnered world-wide attention because they may be related to sex hormone-mediated unknown rapid non-genomic action that cannot be currently explained by their genomic action via nuclear receptors. Progesterone affects cell proliferation and survival via non- genomic effects. In this process, membrane progesterone receptors (mPRα, mPRβ, mPRγ, mPRδ, and mPRε) were identified as putative G protein-coupled receptors (GPCRs) for progesterone. However, the structure, intracellular signaling, and physiological functions of these progesterone receptors are still unclear. Here, we identify a molecular mechanism by which progesterone promotes neurite outgrowth through mPRβ (Paqr8) activation. Mouse mPRβ mRNA was specifically expressed in the central nervous system. It has an incomplete GPCR topology, presenting 6 transmembrane domains and did not exhibit typical GPCR signaling. Progesterone-dependent neurite outgrowth was exhibited by the promotion of ERK phosphorylation via mPRβ, but not via other progesterone receptors such as progesterone membrane receptor 1 (PGRMC-1) and nuclear progesterone receptor in nerve growth factor-induced neuronal PC12 cells. These findings provide new insights of regarding the non-genomic action of progesterone in the central nervous system. Steroid hormones such as corticosterone, progesterone, testosterone, and estrogen are known to exhibit their physiological effects via their specific nuclear receptors1.
    [Show full text]
  • Fatostatin Reverses Progesterone Resistance by Inhibiting The
    Ma et al. Cell Death and Disease (2021) 12:544 https://doi.org/10.1038/s41419-021-03762-0 Cell Death & Disease ARTICLE Open Access Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma Xiaohong Ma 1,2,TianyiZhao1,2,HongYan3,KuiGuo 1,2, Zhiming Liu1,LinaWei1,2,WeiLu1,2, Chunping Qiu 1 and Jie Jiang 1 Abstract Progesterone resistance can significantly restrict the efficacy of conservative treatment for patients with endometrial cancer who wish to preserve their fertility or those who suffer from advanced and recurrent cancer. SREBP1 is known to be involved in the occurrence and progression of endometrial cancer, although the precise mechanism involved remains unclear. In the present study, we carried out microarray analysis in progesterone-sensitive and progesterone- resistant cell lines and demonstrated that SREBP1 is related to progesterone resistance. Furthermore, we verified that SREBP1 is over-expressed in both drug-resistant tissues and cells. Functional studies further demonstrated that the inhibition of SREBP1 restored the sensitivity of endometrial cancer to progesterone both in vitro and in vivo, and that the over-expression of SREBP1 promoted resistance to progesterone. With regards to the mechanism involved, we found that SREBP1 promoted the proliferation of endometrial cancer cells and inhibited their apoptosis by activating the NF-κB pathway. To solve the problem of clinical application, we found that Fatostatin, an inhibitor of SREBP1, could increase the sensitivity of endometrial cancer to progesterone and reverse progesterone resistance by inhibiting 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; SREBP1 both in vitro and in vivo. Our results highlight the important role of SREBP1 in progesterone resistance and suggest that the use of Fatostatin to target SREBP1 may represent a new method to solve progesterone resistance in patients with endometrial cancer.
    [Show full text]
  • Biphasic Modulation of Camp Levels by the Contraceptive Nomegestrol Acetate. Impact on P-Glycoprotein Expression and Activity In
    Biphasic modulation of cAMP levels by the contraceptive nomegestrol acetate. Impact on P-glycoprotein expression and activity in hepatic cells. Guillermo Nicolás Tocchettia,b Camila Juliana Domíngueza Felipe Zecchinatia a Maite Rocío Arana María Laura Ruiza Silvina Stella Maris Villanuevaa Johanna Weissb Aldo Domingo Mottinoa Juan Pablo Rigallib,c* a Institute of Experimental Physiology (IFISE-CONICET). Rosario National University. Suipacha 570. (2000) Rosario. Argentina. Phone: +54-341-4305799. FAX: +54-341- 4399473. b Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg. Im Neuenheimer Feld 410. (69120) Heidelberg. Germany. Phone: +49-6221-56- 39400. FAX: +49-6221-56-4642. c Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center. P.O. Box 9101. (6500 HB) Nijmegen. The Netherlands. Phone: +31-(0)24-3614202. FAX: +31-(0)24-3668340. * corresponding author. E-mail: [email protected] Abstract ABC transporters are key players in drug excretion with alterations in their expression and activity by therapeutic agents potentially leading to drug-drug interactions. The interaction potential of nomegestrol acetate (NMGA), a synthetic progestogen increasingly used as oral contraceptive, had never been explored. In this work we evaluated (1) the effect of NMGA on ABC transporters in the human hepatic cell line HepG2 and (2) the underlying molecular mechanism. NMGA (5, 50 and 500 nM) increased P-glycoprotein (P-gp) expression at both protein and mRNA levels and reduced intracellular calcein accumulation, indicating an increase also in transporter activity. This up-regulation of P-gp was corroborated in Huh7 cells and was independent of the classical progesterone receptor. Instead, using a siRNA- mediated silencing approach, we demonstrated the involvement of membrane progesterone receptor α.
    [Show full text]
  • Ated Progesterone Receptor Component 2 (PGRMC-2) in Matur
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2021 doi:10.20944/preprints202107.0555.v1 Article Molecular Characterization of a Functional Membrane-Associ- ated Progesterone Receptor Component 2 (PGRMC-2) in Matur- ing Oocytes of the Human Parasite Nematode Trichinella spi- ralis: Implications to the Host-Parasite Relationship Jorge Morales-Montor 1, *, Álvaro Colin-Oviedo 2, Gloria María. González-González 2, José Prisco Palma-Nicolás 2, Alejandro Sánchez-González 2, Karen Elizabeth Nava-Castro 3, Lenin Dominguez-Ramirez 4, Martín García-Va- 5 6 2, rela , Víctor Hugo Del Río-Araiza and Romel Hernández-Bello * 1 Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, México.; [email protected] 2 Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey. P 64460. Nuevo León, México.; [email protected] (A.C.O); [email protected] (G.M.G.G); jose.pal- [email protected] (J.P.P.N); [email protected] (A.S.G); [email protected] (R.H.B). 3 Laboratorio de Genotoxicología y Medicina Ambientales. Departamento de Ciencias Ambientales. Centro de Ciencias de la Atmósfera. Universidad Nacional Autónoma de México. 04510. Ciudad de México, Mé- xico.; [email protected] 4 Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Sta. Catarina Mártir, Cholula, C.P 72810 Puebla, México.; [email protected] 5 Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México.; gar- [email protected] 6 Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autó- noma de México, Ciudad de México 04510, México.; [email protected] * Correspondence: [email protected] ; Tel.: (+52 (81) 8329-4177; R.H.B), jmontor66@bio- medicas.unam.mx ; Tel.: (+52555-56223158, Fax: +52555-56223369; J.M.M).
    [Show full text]