The Analysis Techniques of Amino Acid and Protein in Food and Agricultural Products

Total Page:16

File Type:pdf, Size:1020Kb

The Analysis Techniques of Amino Acid and Protein in Food and Agricultural Products INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 10, OCTOBER 2020 ISSN 2277-8616 The Analysis Techniques Of Amino Acid And Protein In Food And Agricultural Products Edy Subroto, Elazmanawati Lembong, Fitry Filianty, Rossi Indiarto, Gisella Primalia, Miswa Salza Kirana Zaenal Putri, Hanna Christy Theodora, Salsabila Junar Abstract: The protein content in food and agricultural products affects the physicochemical and nutritional properties of these products. This review aims to discuss the analysis techniques of protein and amino acid in food and agricultural products. The qualitative analysis can be conducted using the Hopkins-Cole, Xanthoproteic, Millon, Nitroprusside, and Sakaguchi test. In contrast, the quantitative analysis of proteins can use the Kjehldahl, Biuret, Lowry, UV Spectrophotometry, and Turbidimetry. It also discussed the immunohistochemical techniques to identify cellular or tissue constituents (antigens) by staining techniques, while Formol titration measures the hydrolysis of proteins and N-amino quickly. The amino acids can be analyzed by microbiological methods, colorimetric, high-performance liquid chromatography (HPLC), and gravimetric techniques. These methods/techniques can be chosen according to the type of sample and the purpose of the analysis so that the results can be obtained accurately. Index Terms: Protein, amino acid, analysis technique, food, agricultural product —————————— —————————— 1. INTRODUCTION specifically associated with forming proteins [2]. Based on the Protein is one of the main macromolecular components that source, protein can be divided into two groups, namely composed of amino acids through peptide bonds in specific vegetable protein and animal protein [9]. Vegetable proteins sequences and types. Amino acids contained several main are the protein derived from vegetable materials, such as nuts, elements, such as C, H, O, and N. In addition, proteins also soybean, and other cereals. Animal proteins are the protein contain other elements such as sulfur, phosphorus, iron, and derived from animal products such as milk, eggs, meat, and copper [1]. Amino acids contained in proteins are linked by a fishery products. Animal protein has a complete and high- bond called a peptide bond [2]. Protein functions to form body quality protein because it contains essential amino acids, tissue, growth, and form various bioactive compounds [3]. especially amino acids that contain sulfur [10]. Both vegetable Specifically, proteins contain carbon atoms (50-55%), oxygen and animal proteins can also be modified into bioactive (20-23%), nitrogen (12-19%), hydrogen (6-7%), and sulfur peptides that are beneficial both in the field of food and (0.2-3%) [4]. The amino acid has two functional groups, a pharmaceutical technology [11], [12]. To determine the content namely amino group and a carboxyl group [5]. Amino groups of protein and amino acids in food and agricultural products, a provide alkaline properties, whereas carboxyl groups provide quantitative or qualitative analysis must be conducted. acidic properties. In liquid or solution form, amino acids have Therefore, an appropriate analysis method is needed to amphoteric properties, which tend to become acidic when in identify the levels of protein and amino acids in food materials. the base solution, and turn into the base when in acidic This review discusses various analytical methods to determine solution. This is due to amino acids being able to become the protein and amino acid content, both qualitative and zwitterions [6]. The characteristics of a protein are determined quantitative analysis. The qualitative analysis includes several by the type of amino acids and their sequence in polypeptides. reactions, including Xanthoproteic reaction, Hopkins-Cole Proteins have types of structures, which include the structure reaction, Millon reaction, Nitroprusside reaction, and of primary, secondary, tertiary, and quaternary [7]. The primary Sakaguchi reaction. Quantitative analysis includes several structure shows the amount and sequence of amino acids in a methods, namely the Kjeldahl, Lowry, Biuret, and polypeptide. The structure of secondary shows the structural Spectrophotometry, Turbidimetry, and Formol titration content of a polypeptide which is influenced by the hydrogen methods. Analysis of amino acid levels can be determined by bonding between oxygen (O) of the carbonyl group (C=O) and several methods, namely the Colorimetric, Gravimetric, hydrogen (H) of the amino group (N-H) of the peptide chain Chromatographic, and Microbiological methods. framework [8]. The tertiary structure of proteins is formed by additional bonds between R groups in amino acids. Disulfide 2 QUALITATIVE ANALYSIS OF PROTEINS bonds are the only covalent bonds involved in tertiary Qualitative analysis proteins consisted of the Hopkins Cole structures, formed by oxidation of sulfhydryl groups from two test, Millon test, Xanthoproteic test, Nitroprusside test, and cysteinyl residues. The quarter structure involves the Sakaguchi test. The specificity of the qualitative analysis interaction between two or more polypeptide chains that are techniques of protein can be seen in Table 1. Tabel 1. The specificity of the qualitative analysis techniques of protein. Analysis No Analysis specificity ———————————————— techniques Identify the tryptophan based on Indole ring Edy Subroto, Elazmanawati Lembong, Fitry Filianty, Rossi Indiarto, 1 Hopkins Cole test Gisella Primalia, Miswa Salza Kirana Zaenal Putri, Hanna Christy group. Identify the phenolic amino acids such as Theodora, Salsabila Junar: Department of Food Industrial 2 Millon test Technology, Faculty of Agro-Industrial Technology, Universitas tyrosine and its derivatives. Padjadjaran, Jl.Raya Bandung-Sumedang Km. 21, Jatinangor, Identify the proteins and amino acids that Sumedang 40600, Indonesia. E-mail: [email protected] have aromatic rings or benzene groups 3 Xanthoproteic test such as phenylalanine, tyrosine, tryptophan, etc. 29 IJSTR©2020 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 10, OCTOBER 2020 ISSN 2277-8616 Detect the presence of cysteine amino 4 Nitroprusside test appears based on the nitration reaction on the aromatic ring of acids. amino acids [18]. The principle of testing phenylalanine, Identify the amino acid arginine based on 5 Sakaguchi test tyrosine, and tryptophan by the Xanthoproteic test method is guanidine group in its side chain. by homogenizing 1 mL of HNO solution that already contains 3 a 2% protein solution. After that, the sample is heated using a 2.1 Hopkins Cole test water bath for 15-20 minutes or on fire for 2 minutes, then a Hopkins Cole Test is one of the qualitative test methods to change in the color of the solution is observed. The test tube is determine differences in types of proteins and amino acids. incubated at room temperature until the temperature This test is used to identify the presence of the amino acid decreases then NH solution or 20-40% NaOH is added to it, tryptophan, which is the only amino acid that has an indole 3 and a change in the color of the formed solution is observed ring group [13]. Tryptophan belongs to the group of essential again [15]. amino acids. Tryptophan is a precursor of niacin vitamin and an introduction to the serotonin nerve. Tryptophan functions to 2.4 Nitroprusside test maximize the use of vitamin B complex, improve nerve health, Nitroprusside test is a test used to detect the presence of stabilize emotions, increase feelings of calm, prevent cysteine amino acids. This test uses sodium nitroprusside insomnia, and increase the release of growth hormone. One of reagents and ammonia solution. The testing principle is that these amino acids can be found in egg whites. Hopkins Cole the free -SH group called thiol or mercapto, which is owned by reagents which contain glyoxylic acid (C H O ) react with 2 2 3 the amino acid cysteine will react with nitroprusside in the sulfuric acid. Tryptophan in the protein solution will be case of excess ammonia to form red compounds. The S-S- condensed with the aldehyde group on glyoxylic acid with the group in cysteine will give positive results in nitroprusside help of strong oxidizing sulfuric acid. Positive results are testing if it is reduced first. Nitroprusside testing is conducted indicated by the formation of purple rings between 2 separate by entering 0.5 mL of sodium nitroprusside 1% into the test layers [13], [14]. According to Elzagheid [15], the principle of tube then add 2 mL of the sample to be tested, then add 0.5 testing tryptophan by the Hopkins Cole test method is by mL of NH OH solution. The sodium nitroprusside solution used adding 1 mL of Hopkins Cole reagent into a test tube that 4 must be in a new condition and made just before the test [19]. already contains a 2% protein solution, then the concentrated Nitroprusside reactions can be applied in various tests, one of sulfuric acid solution is added as much as 1-2 mL. The which is to detect the content of cysteine in urine clinically [20]. solution is homogeneous with vortex, and then color changes The test was carried out by adding of sodium nitroprusside are formed. 20% (w/v), then the color intensity was measured using a spectrophotometer at a wavelength of 521 nm in 1 minute, and 2.2 Millon test the cysteine concentration was calculated using a standard Millon test is one of the qualitative test methods to determine curve [21]. differences in types of proteins and amino acids, namely the type of phenolic amino or amino acids that have phenol 2.5 Sakaguchi Test groups such as tyrosine and its derivatives [13]. Tyrosine is a The Sakaguchi test is a chemical test that includes a non-essential amino acid that has a phenyl group and is a colorimetric reaction for the identification and quantification of weak acid. One of these amino acids can be found in milk the amino acid arginine. Arginine is an amino acid that has a casein. Millon test is not a specific test, because this test guanidine group in its side chain, which is the C atom that identifies all types of phenol compounds, so to ensure that binds N with a single bond and binds N with a double bond.
Recommended publications
  • Biotech II Lab Manual
    Biotech 2 Lab Manual Version 1.0 Table of Contents Unit A: Laboratory Techniques Lab 1: Lab Safety Lab 2: Reviewing Measurements Lab 3: Protein Determination Lab 4 : Gram Staining Lab 5: Antibiotic Assay Lab 6: Cell Culturing Labs Lab 7: Fermentation Lab 8: Experimenting with Physarium Unit B1: Gene Expression Lab 9: pBLU Transformation Unit B2: DNA and Cloning Lab 10: PCR Cloning a. Isolating DNA b. PCR c. Cleaning and Preparing PCR Product d. Ligation and Transformation e. Plasmid Preps f. Restriction Digests Lab 11: DNA Chips/Arrays Lab 12: Bioinformatics Unit B3. Proteins as Products Lab 13: The Action of Enzymes on Apple Juice Production Lab14: Enzyme Kinetics Lab15: Developing an Assay to Determine Protease Activity Lab16: Assaying for Amylase Activity Lab17: Searching for Native Amylase Activity Lab18: Using the Spectrophotometer to Study Amylase Lab19: Protein Purification of Amylase a. Dialysis of Amylase b. Ion-Exchange Chromatography c. Determining Protein Concentration of Amylase d. Characterizing Proteins with SDS-PAGE e. Assaying Amylase Activity Unit C: Therapeutic Applications of Biotechnology Lab 20: Immunodiffusion Assay Lab 21: ELISA Assay Lab 22: Effect of Drugs on Daphnia Lab 23: Activities in Regenerative Medicine Lab 1: Creating a Safe and Effective Laboratory Introduction A lab dealing with biotechnology can have several potential dangers. It is important that you know which equipment to use and how to use it safely. It is also important to know what to do when accidents happen. Understanding the nature of hazardous materials and equipment can help you reduce your risk and create a safe environment in which to work.
    [Show full text]
  • Thermo Bca Assay Protocol
    Thermo Bca Assay Protocol Flutiest and frore Zary mulct, but Eddie spaciously roose her Nestorius. Barefoot Jimbo endued or seise some consecutiveness soli, however gambrel Ingmar botanizes growlingly or misspends. Said Kareem presumes his gooseberry disparts intolerably. Use needleresistant gloves to break its lid should the ampule on the mercury toward the steel of the vial and dispose of beautiful glass bar in a plastic sharps container, or use ampule snapper. Subscription will auto renew annually. Reason why detergent in the assay and past, that the product. Though BCA method takes longer time grace the test procedure than PRM method it first be recommended for routine use feed to accuracy of the results. Reduction of graphene oxide by resveratrol: a longer and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. In presence of an absorbing solution, is inherent fluorescence is quenched and cannot decrease in fluorescent signal can be used to measure colorimetric assays. The immune system relies on diverse mechanisms working in concert to justice the boundary from infection and to identify and remove aberrant or damaged cells. Cellular metabolism comprises a order of biochemical reactions that link in concert within the cells of living organisms. Criteria for judging precision and accuracy in method development and evaluation. Raise the profile of did research project by leading a food Issue. Establish a blank using an appropriate buffer. Protein standards and samples were already in severe and loaded with remote single channel pipettor. Successful use enhance the learning algorithm improves outcome just an integrated, and glycosylated proteins.
    [Show full text]
  • Rules of the Alabama Department of Forensic Sciences Chapter 370-1-1 Chemical Test for Intoxication Table of Contents 370-1-1
    RULES OF THE ALABAMA DEPARTMENT OF FORENSIC SCIENCES CHAPTER 370-1-1 CHEMICAL TEST FOR INTOXICATION TABLE OF CONTENTS 370-1-1-.01 Admissibility Rule for the Evidential Breath Alcohol Test Method 370-1-1-.03 Blood, Urine, and Other Bodily Substances 370-1-1-.04 Field Sobriety Screening Tests 370-1-1-.05 Field Sobriety Alcohol Screening Devices 370-1-1-.06 Field Sobriety Drug Screening Devices 370-1-1-.01 Admissibility Rule for the Evidential Breath Alcohol Test Method. (1) Purpose. This rule addresses the statutory elements required for the admissibility of evidence obtained from Breath Alcohol Testing Instruments. This rule contains the METHOD, as referred to by §32-5A-194 Code of Alabama, 1975 as amended, which insures and verifies that each individual Breath Alcohol Test is performed accurately and reliably. IN EVENT THAT ONE OF THESE REQUIREMENTS IS NOT FULFILLED, BREATH ALCOHOL TESTING EVIDENCE MAY STILL BE OFFERED THROUGH TRADITIONAL EVIDENTIARY PREDICATE as approved of in Ex parte Mayo, 652 So. 2d 201 (Ala. 1994). (2) Definitions and Abbreviations. (a) Draeger 7110 MKIII (i) Acceptable Breath Sample. For the purpose of this rule the subject must provide the Draeger Alcotest 7110 MKIII with a breath sample of sufficient volume and duration, as required by the software to be accepted for analysis. Software versions prior to and including version 3.24 require the subject to provide a minimum of 1.5 liters of breath, for a minimum of 4.5 seconds. Software versions 3.25 or later require the subject to provide a minimum of 1.3 liters of breath, for a minimum of 4.0 seconds.
    [Show full text]
  • HIGH SCHOOL COURSE OUTLINE (Revised June 2011)
    OFFICE OF CURRICULUM, INSTRUCTION, & PROFESSIONAL DEVELOPMENT HIGH SCHOOL COURSE OUTLINE (Revised June 2011) Department Science Course Title Biotechnology 1-2 Course Code 3867 Abbreviation Biotech 1-2 Grade Level 10, 11 Grad Requirement No Credits per Approved Course Length 2 semesters 5 No Required No Elective Yes Semester for Honors Health Science and Biotechnology Research CTE Industry Sector CTE Pathway Medical Technology and Development Prerequisites Biology 1-2 with a "C" or better Co-requisites Integrated Math Program (IMP) 5-6 maintaining a “C” or better Articulated with LBCC No Articulated with CSULB No Meets UC “a-g” Requirement Yes (d) Meets NCAA Requirement Yes COURSE DESCRIPTION: Biotechnology 1-2 is a course designed to give students a comprehensive introduction to the scientific concepts and laboratory research techniques currently used in the field of biotechnology. Students attain knowledge about the field of biotechnology and deeper understanding of the biological concepts used. In addition, students develop the laboratory, critical thinking, and communication skills currently used in the biotechnology industry. Furthermore, students will explore and evaluate career opportunities in the field of biotechnology through extensive readings, laboratory experiments, class discussions, research projects, guest speakers, and workplace visits. The objectives covered in this course are both academic and technical in nature and are presented in a progressively rigorous manner. COURSE PURPOSE: GOALS (Student needs the course is intended to meet) Students will: CONTENT • Students will learn the basic biological and chemical processes of cell, tissues, and organisms. They will also learn the historical experiments that led to the central dogma of molecular biology and understand the basic processes of DNA replication, transcription and translation.
    [Show full text]
  • Recommended Methods for the Identification and Analysis Of
    Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.
    [Show full text]
  • Organic Functional Group Analysis
    Experiment 1 1 Laboratory Experiments for GOB Chemistry ___________________________________________________________________________________________ I ORGANIC FUNCTIONAL GROUP ANALYSIS I. OBJECTIVES AND BACKGROUND This experiment will introduce you to some of the more common functional groups of organic chemistry. The functional group is that portion of the molecule that undergoes a structural change during a chemical reaction. The functional groups that will be studied in this experiment are carboxylic acid, amines aldehyde, ketone, alcohols and alkenes. You will learn chemical tests that will allow you to distinguish one functional group from another. You will use the chemical tests to identify the functionality of an unknown organic compound. In addition, you will use a water solubility test to determine whether your organic compound is of high or low formula weight. The chemical tests you will perform make up a sequence of experiments designed to determine the absence of or suggest the presence of particular functional groups. The complete sequence is shown in the flow diagram on page 8. This diagram can serve you in several ways: It is a summary of the procedure that you are to follow in classifying your unknown as one of the functional group types. It can order your thoughts as you read the discussion of each test, and help you to understand the significance of that test. It can enhance your appreciation for and enjoyment of this experiment. Your role is that of chemist and detective: you will employ this cleverly devised scheme to sleuth out the identity of your unknown's functionality. Experiment 1 2 Laboratory Experiments for GOB Chemistry ___________________________________________________________________________________________ Discussion of Chemical Tests 1.
    [Show full text]
  • (B.Sc.) in Biological Sciences Under CBCS Department of Life Science
    Structure and Detailed Syllabus of the Undergraduate Course (B.Sc.) in Biological Sciences under CBCS Department of Life Sciences Presidency University Department of Life Sciences (Faculty of Natural and Mathematical Sciences) Presidency University Hindoo College (1817-1855), Presidency College (1855-2010) 86/1, College Street, Kolkata - 700 073 West Bengal, India 0 | P a g e Content Topic Page No. A. Semester-wise Course Structure and Module Compositions 3 B. Detailed Syllabus for respective Modules 6 Core Course BIOS01C1: Chemistry 5 BIOS01C2: Light and Life 6 BIOS02C3: Biophysics 7 BIOS02C4: Biodiversity 8 BIOS03C5: Proteins and Enzymes 10 BIOS03C6: Cell Biology 11 BIOS03C7: Ecology 13 BIOS04C8: Systems Physiology 14 BIOS04C9: Molecular Biology 15 BIOS04C10: Metabolism and Integration 17 BIOS05C11: Growth and Reproduction 18 BIOS05C12: Genetics 19 BIOS06C13: Defense Mechanisms 21 BIOS06C14: Evolutionary Biology 22 Discipline Specific Elective BIOS05DSE1: Biostatistics & Bioinformatics 25 BIOS05DSE2: Analytical Techniques in Biology 26 BIOS06DSE3: Stress Biology 27 BIOS06DSE4: Classification, Biosystematics and Molecular Analysis 28 Ability Enhancement Compulsory Course AE-1: English communication AE-2: Environmental science Skill Enhancement Elective Courses BIOS03SEC1: Public Health and Management 29 1 | P a g e BIOS04SEC2: Recombinant DNA Technology 29 Generic Elective (GE) BIOS01GE1: World of Animals 31 BIOS02GE2: Economic applications of plant and microbial biotechnology 31 BIOS03GE3: Modern Lifestyle, Behaviors and Ailments 32
    [Show full text]
  • UV Talk Letter Vol. 07
    C101-E120 UV Talk Letter Vol.7 UV Talk Letter BioSpec-nano Life Science UV-VIS Spectrophotometer Life science research involves the handling of extracted and purified nucleic acids (DNA, RNA) in conducting PCR (Polymerase Chain Reaction), quantitative PCR, cloning, base sequence determination, DNA micro-array analysis, etc. Nucleic acid analysis using ultraviolet-visible spectrophotometers is widely conducted to successfully guide these processing operations. This document introduces the BioSpec-nano UV-VIS spectrophotometer, which provides simple and quick analysis of micro-level nucleic acids. 1. BioSpec-nano Features The BioSpec-nano, unlike conventional spectrophotometers, adopts an optical system that does not rely on the use of cells (cuvettes). The optical system comprises a xenon flash lamp, an upper window, a target platform (fiber optic element housing), holographic grating, and photodiode array detector. Measurement with the BioSpec-nano is conducted by automatically sandwiching the sample between the upper window and target to achieve a fixed pathlength (0.2 mm or 0.7 mm). This type of optical system allows measurement of ultra-small sample volumes in the range of 1 – 2 μL, as well as undiluted high-concentration samples, greatly facilitating the analysis operation. Cell washing and drying with conventional instruments is an extremely time-consuming, tedious task, which greatly impedes the analysis operation. With the BioSpec-nano, however, cleaning the liquid-contact surfaces (upper window and target) is accomplished by a simple wiping of the wet surfaces. The automated mounting mechanism, which establishes the appropriate pathlength, and the automated liquid-contact surface wiping feature allow true drop-and-click analysis.
    [Show full text]
  • 1 BCH303 [Practical]
    BCH303 [Practical] 1 • The accurate quantitation of protein content is a critical step in protein analysis. • Importance of protein quantification ? • Depending on the accuracy required and the amount and purity of the protein available: ➔ different methods are appropriate for determining protein concentration. 2 • Methods: 1. Direct assay: measure the absorbance at 280 nm. 2. Colorimetric/fluorescent and reagent-based protein assay: Protein is added to the reagent, producing a color change or increased fluorescence in proportion to the amount added. • The most commonly used reagent-based techniques involve: ➢ Biuret test. ➢ Bradford test. ➢ Bicinchoninic acid assay (BCA assay). ➢ Lowry test. 3 • Best or ideal method ? WHY? • Each method has its advantages and disadvantages. • How to choose the appropriate method? ➔ Compatibility with the sample. ➔ Availability. ➔ Interfering substances . ➔ Accuracy. ➔ Sensitivity. ➔ Time. ➔ …. 4 Disadvantages and Method Sensitivity Time Reagent Interferences comments Zwitterionic Alkaline Similar color with all proteins. Low Moderate buffers, Biuret copper Destructive to protein 1-20 mg 20-30min Some amino sulphate samples. acids Ammonium sulphate, Time-consuming. Color varies High Slow Cu+2 Folin– glycine, Lowry with proteins. Destructive to 5 µg 40-60min Ciocalteau Zwitterionic, protein samples. buffers, Mercaptans Stable color, which varies Strongly basic with proteins. Reagent Coomassie Buffers, High Rapid commercially available. Bradford Brilliant Blue detergents 1 µg 15 min Destruction to protein G-250 TritonX-100, samples. SDS Discoloration of glassware. Cu2+, Compatible with detergents. bicinchoninic EDTA, DTT, High Slow Reagents commercially BCA acid Ammonium 1 µg 60 min available. Destructive to sulphate Protein samples. Useful for monitoring column Spectroph Purines, eluents. Nucleic acid Moderate Rapid -otometric - pyrimidines, absorption can be corrected.
    [Show full text]
  • 510(K) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY and INSTRUMENT COMBINATION TEMPLATE
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE A. 510(k) Number: k180356 B. Purpose for Submission: New Device C. Measurand: Glucose, protein, leukocyte, nitrite and ketones in urine D. Type of Test: Qualitative and semi-quantitative urinalysis E. Applicant: Scanadu, Inc. F. Proprietary and Established Names: inui In-Home Urine Analysis Test System G. Regulatory Information: Name Regulation Product Device code class Urinary glucose (non-quantitative) test 21 CFR 862.1340 JIL II system Urinary protein or albumin (non- 21 CFR 862.1645 JIR I quantitative) test system Leukocyte peroxidase test 21 CFR 864.7675 LJX I Nitrite (non-quantitative) test system 21 CFR 862.1510 JMT I Ketones (non-quantitative) test system 21 CFR 862.1435 JIN I 2. Panel: Chemistry (75), Hematology (81) 1 H. Intended Use: 1. Intended use(s): See indications for use statement below. 2. Indication(s) for use: The inui In-Home Urine Analysis Test System consists of the inui In-Home Urine Analysis Device and the inui Urine Analysis Mobile Application. The inui In-Home Urine Analysis Test System is intended for detecting the following parameters in urine: protein, glucose, leukocytes, nitrites, and ketones. The test results provide information regarding the status of urinary tract infections (UTI), proteinuria, glucosuria, and ketonuria. These results can be used as an aid for monitoring kidney functions, metabolic disorders (e.g. diabetes mellitus), and can be used in the screening for urinary tract infections (UTI). The inui In-Home Urine Analysis Device is intended for use as a Prescription Home use device.
    [Show full text]
  • Supplementary Information Methods for Converting Cysteine to Dehydroalanine on Peptides and Proteins
    Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011 Supplementary Information Methods for converting cysteine to dehydroalanine on peptides and proteins Justin M. Chalker,a Smita B. Gunnoo,a Omar Boutureira,a Stefanie C. Gerstberger,a Marta Fernández-González,a Gonçalo J. L. Bernardes,a Laura Griffin,b Hanna Hailu,b Christopher J. Schofield,a and Benjamin G. Davis*a a Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK b UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, United Kingdom [email protected] S1 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011 Table of Contents General considerations S4 Synthesis of AcCysOMe S6 Synthesis of methyl ester of Ellman’s reagent (4) S6 Synthesis of disulfide 3 S7 Reaction of 3 and HMPT S8 BocAlaCysOMe (7) synthesis S9 BocAlaDhaOMe (8) using reduction-elimination S11 Reaction of disulfide 3 with DBU S13 Reaction of AcCysOMe and Mukaiyama’s reagent S14 MSH synthesis S15 BocSerOMe synthesis S16 BocThrOMe synthesis S16 BocAsnOMe synthesis S17 BocGlnOMe synthesis S18 BocTyrOMe synthesis S18 BocTrpOMe synthesis S20 BocMetOMe synthesis S20 BocHisOMe synthesis S21 BocLysOMe synthesis S22 HCl•PheOMe synthesis S25 MSH reaction with BocSerOMe S26 MSH reaction with BocThrOMe S26 MSH reaction with BocAsnOMe S26 MSH reaction with BocGlnOMe S27 MSH reaction with BocTyrOMe S27 MSH reaction with BocTrpOMe S27 MSH
    [Show full text]
  • Kinetic Direct Peptide Reactivity Assay (Kdpra): Validation Study Report
    Kinetic DPRA Validation Study Report 6 March 2020 Kinetic Direct Peptide Reactivity Assay (kDPRA): Validation Study Report Lead Laboratories and Study Management: BASF SE Britta Wareing Phone: +49 621 60-58107, Email: [email protected] Dr. Susanne Kolle Phone: +49 621 60-56731, Email: [email protected], Experimental Toxicology and Ecology Postal Address: BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany Responsibilities: Protocol authorship Coordination between laboratories Organisation of test chemical procurement Givaudan Schweiz AG Dr. Andreas Natsch Phone: +41 44 824 21 05, Email: [email protected]; Tina Haupt Phone: +41 44 824 25 15, Email: [email protected] Postal Address: Department of in vitro molecular screening, Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland Responsibilities: Test chemical selection Optimisation of rate constant calculation in evaluation sheet and cut-off refinement Biostatistics Naïve Test Laboratories: Institute for In Vitro Sciences (IIVS), 30 West Watkins Mill Road Suite 100, Gaithersburg, MD 20878, USA: Contact persons: Erin H Hill ([email protected]), Hans Raabe ([email protected]), Rishil Kathawala ([email protected]) Procter & Gamble, Mason Business Center, DS3-812, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA: Contact persons: Cindy Ryan ([email protected]) and Petra Kern ([email protected]) Charles River Laboratories Den Bosch BV, Hambakenwetering 7, 5231 DD ‘s-Hertogenbosch, The Netherlands: Contact persons: Walter Westerink ([email protected]),
    [Show full text]