Carbohydrate Tests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Properties of Maltodextrins and Glucose Syrups in Experiments in Vitro and in the Diets of Laboratory Animals, Relating to Dental Health
Downloaded from British Journal of Nutrition (2000), 84, 565±574 565 https://www.cambridge.org/core Properties of maltodextrins and glucose syrups in experiments in vitro and in the diets of laboratory animals, relating to dental health T. H. Grenby* and M. Mistry . IP address: Department of Oral Medicine and Pathology, GKT Dental Institute, Guy's Hospital, London SE1 9RT, UK (Received 5 July 1999 ± Revised 13 December 1999 ± Accepted 26 January 2000) 170.106.33.42 The objective of the study was to examine the cariogenic potentials of maltodextrins and glucose , on syrups (two glucose polymers derived from starch) using a range of techniques in vitro and in 01 Oct 2021 at 02:19:26 laboratory animals. The experimental methods used were: (1) measurement of acid production from glucose syrups and maltodextrins by human dental plaque micro-organisms; (2) evaluation of the role salivary a-amylase in degrading oligosaccharides (degree of polymerisation .3) in the glucose polymers, estimating the products by HPLC; (3) assessment of the fermentability of trioses relative to maltose; (4) measurement of dental caries levels in three large-scale studies in laboratory rats fed on diets containing the glucose polymers. It was found that acid production from the glucose polymers increased as their higher saccharide content fell. Salivary a-amylase , subject to the Cambridge Core terms of use, available at rapidly degraded the oligosaccharides (degree of polymerisation .3), mainly to maltose and maltotriose. In the presence of oral micro-organisms, maltotriose took longer to ferment than maltose, but by the end of a 2 h period the total amount of acid produced was the same from both. -
Rules of the Alabama Department of Forensic Sciences Chapter 370-1-1 Chemical Test for Intoxication Table of Contents 370-1-1
RULES OF THE ALABAMA DEPARTMENT OF FORENSIC SCIENCES CHAPTER 370-1-1 CHEMICAL TEST FOR INTOXICATION TABLE OF CONTENTS 370-1-1-.01 Admissibility Rule for the Evidential Breath Alcohol Test Method 370-1-1-.03 Blood, Urine, and Other Bodily Substances 370-1-1-.04 Field Sobriety Screening Tests 370-1-1-.05 Field Sobriety Alcohol Screening Devices 370-1-1-.06 Field Sobriety Drug Screening Devices 370-1-1-.01 Admissibility Rule for the Evidential Breath Alcohol Test Method. (1) Purpose. This rule addresses the statutory elements required for the admissibility of evidence obtained from Breath Alcohol Testing Instruments. This rule contains the METHOD, as referred to by §32-5A-194 Code of Alabama, 1975 as amended, which insures and verifies that each individual Breath Alcohol Test is performed accurately and reliably. IN EVENT THAT ONE OF THESE REQUIREMENTS IS NOT FULFILLED, BREATH ALCOHOL TESTING EVIDENCE MAY STILL BE OFFERED THROUGH TRADITIONAL EVIDENTIARY PREDICATE as approved of in Ex parte Mayo, 652 So. 2d 201 (Ala. 1994). (2) Definitions and Abbreviations. (a) Draeger 7110 MKIII (i) Acceptable Breath Sample. For the purpose of this rule the subject must provide the Draeger Alcotest 7110 MKIII with a breath sample of sufficient volume and duration, as required by the software to be accepted for analysis. Software versions prior to and including version 3.24 require the subject to provide a minimum of 1.5 liters of breath, for a minimum of 4.5 seconds. Software versions 3.25 or later require the subject to provide a minimum of 1.3 liters of breath, for a minimum of 4.0 seconds. -
Recommended Methods for the Identification and Analysis Of
Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr. -
Organic Functional Group Analysis
Experiment 1 1 Laboratory Experiments for GOB Chemistry ___________________________________________________________________________________________ I ORGANIC FUNCTIONAL GROUP ANALYSIS I. OBJECTIVES AND BACKGROUND This experiment will introduce you to some of the more common functional groups of organic chemistry. The functional group is that portion of the molecule that undergoes a structural change during a chemical reaction. The functional groups that will be studied in this experiment are carboxylic acid, amines aldehyde, ketone, alcohols and alkenes. You will learn chemical tests that will allow you to distinguish one functional group from another. You will use the chemical tests to identify the functionality of an unknown organic compound. In addition, you will use a water solubility test to determine whether your organic compound is of high or low formula weight. The chemical tests you will perform make up a sequence of experiments designed to determine the absence of or suggest the presence of particular functional groups. The complete sequence is shown in the flow diagram on page 8. This diagram can serve you in several ways: It is a summary of the procedure that you are to follow in classifying your unknown as one of the functional group types. It can order your thoughts as you read the discussion of each test, and help you to understand the significance of that test. It can enhance your appreciation for and enjoyment of this experiment. Your role is that of chemist and detective: you will employ this cleverly devised scheme to sleuth out the identity of your unknown's functionality. Experiment 1 2 Laboratory Experiments for GOB Chemistry ___________________________________________________________________________________________ Discussion of Chemical Tests 1. -
Food Science and Technology Notes Extension Division Deportment of Food Scienceondtechnology Virginia Polytechnic Institute Blacksburg, Virginia
Food Science and Technology Notes Extension Division Deportment of Food ScienceondTechnology Virginia Polytechnic Institute Blacksburg, Virginia HFST-547-1 SOME NEWER IDEAS FOR USING CORN SWEETENERS IN ICE CREAM Dr. J. G. Leeder Department of Food Science Rutgers - The State University New Brunswick, New Jersey (Reproduced from NICFA Production Tirs, March 1970) Although the subject of corn sweeteners has been discussed in these Production Tips on several occasions, there still seems to be some misunderstanding about t he various corn sweetener products, their composition differences, and how they should be used in ice cream. This situation has caused confusion among ice cream manufac turers. I shall try to clear up the corn sweetener "problem" by re-defining the several products available and indicate how they should be used. In the first place, corn sweeteners should not be called "corn sugar. 11 Corn sugar, or dextrose, is a monosaccharide sugar obtained from the complete hydrolysis of corn starch. This sugar, which is about 75% as sweet as sucrose, has an approxi mate analysis of dextrose - 92% and water (as water of crystallization) - 8%. Since a 15% dextrose solution has a freezing point of 28.63°F compared with 30.16°F for a 15% sucrose solution, only 25% replacement of sucrose with dextrose is advisable. More than this amount of dextrose will cause difficulties with freezing , hardening, and storing of the ice cream because its freezing point will be too low. Dextrose (corn sugar) is not used much today in ice cream because it has no body building or heat shock resistance properties and because it lowers the freezing point too much. -
Nutritive Sweeteners from Corn Have Become America’S Premier Sweeteners
NutritiveNutritive SweetenersSweeteners FromFrom CornCorn CONTENTS Member Companies and Plant Locations ....................................... 2 Foreword .......................................................................................... 3 Historical Perspective ...................................................................... 4 Research and development orientation ....................................... 5 Technology aimed at needs .......................................................... 7 Growth, Development and Diversity ............................................. 7 CONTENTS Classification and Nutrition ............................................................ 9 Classification ................................................................................. 9 Corn sweeteners in nutrition ..................................................... 10 Technical Background ................................................................... 11 Corn starch ................................................................................. 11 Starch hydrolysis ........................................................................ 13 Crystalline dextrose .................................................................... 14 Dextrose isomerization .............................................................. 15 Manufacture ................................................................................... 17 Corn syrups ................................................................................ 17 Dried corn syrups ...................................................................... -
Sugar Conversion of Immature Green Rice Syrup Under Solid State Fermentation
Research Article Science Technology and Engineering Journal (STEJ) Vol.6, No.1 pages 46-56 Sugar Conversion of Immature Green Rice Syrup under Solid State Fermentation Chainarong Chuayjum1*, Wiriya Onsaard1 and Chuenjit Prakitchaiwattana2 1 Department of Agro-Industry, Faculty of Agricultrure, Ubon Ratchathani University Warinchamrap, Ubon Ratchathani, 34190, Thailand 2 Department of Food Technology, Faculty of Science, Chulalongkorn University Pathumwan, Bangkok, 10330, Thailand * Corresponding Author: [email protected] (Received: 5th June 2020, Revised: 18th June 2020, Accepted: 23rd June 2020) Abstract- Immature green rice contains high content of γ–oryzanol as well as γ -aminobutiric acid (GABA) and found that several bioactive active compounds such as phenolic compounds, chlorophyll, ß-carotene, tocopherol as well antioxidant activities were reported. Thus, this research is aimed to add more value of immature green rice as a substrate for Isomaltooligosaccharides (IMOs). The scope is studied a sugar conversion from immature green rice during liquefaction using solid state fermentation (SSF) of Aspergillus oryzae TISTR 3102. The process included, gelatinization of immature green rice starter inoculation as solid state with A. oryzae and under 30 oC for 8 days. The highest syrup volume was obtained after 7 days of fermentation (p≤0.05) with increasing of total soluble solids (oBrix) (p>0.05). Moreover, reducing sugar found increased and the highest value was observed at the 4th day of fermentation (p≤0.05) and tended to constant through fermentation period. The highest total solid content (%) was found at the 6th day of fermentation (p≤0.05) and tended to decreasing. pH value was decreased from 5.27±0.01 to 4.73±0.01 after 7 days of fermentation (p≤0.05). -
Codex Standard for Sugars1 Codex Stan 212-1999 1
CODEX STAN 212-1999 Page 1 of 5 CODEX STANDARD FOR SUGARS1 CODEX STAN 212-1999 1. SCOPE AND DESCRIPTION This Standard applies to the following sugars intended for human consumption without further processing (synonyms are in round brackets). It includes sugars sold directly to the final consumer and sugars used as ingredients in foodstuffs. The description of each of the sugars is also given below: Name Description White sugar Purified and crystallised sucrose (saccharose) with a polarisation not less than 99.7 ºZ. Plantation or mill white sugar Purified and crystallised sucrose (saccharose) with a (or any other equivalent name accepted in the polarisation not less than 99.5 ºZ. country of origin in which it is sold) Powdered sugar Finely pulverised white sugar with or without the addition (icing sugar) of an anticaking agent Soft white sugar Fine grain purified moist sugar, white in colour with a sucrose plus invert sugar content of not less than 97.0% m/m. Soft brown sugar Fine grain purified moist sugar, light to dark brown in colour with a sucrose plus invert sugar content of not less than 88.0% m/m. Dextrose anhydrous Purified and crystallised D-glucose without water of crystallisation, with a D-glucose content of not less than 99.5% m/m on a dry basis and a total solids content of not less than 98.0% m/m. Dextrose monohydrate Purified and crystallised D-glucose containing one molecule of water of crystallisation, with a D-glucose content of not less than 99.5% m/m on a dry basis and a total solids content of not less than 90.0% m/m. -
510(K) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY and INSTRUMENT COMBINATION TEMPLATE
510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY AND INSTRUMENT COMBINATION TEMPLATE A. 510(k) Number: k180356 B. Purpose for Submission: New Device C. Measurand: Glucose, protein, leukocyte, nitrite and ketones in urine D. Type of Test: Qualitative and semi-quantitative urinalysis E. Applicant: Scanadu, Inc. F. Proprietary and Established Names: inui In-Home Urine Analysis Test System G. Regulatory Information: Name Regulation Product Device code class Urinary glucose (non-quantitative) test 21 CFR 862.1340 JIL II system Urinary protein or albumin (non- 21 CFR 862.1645 JIR I quantitative) test system Leukocyte peroxidase test 21 CFR 864.7675 LJX I Nitrite (non-quantitative) test system 21 CFR 862.1510 JMT I Ketones (non-quantitative) test system 21 CFR 862.1435 JIN I 2. Panel: Chemistry (75), Hematology (81) 1 H. Intended Use: 1. Intended use(s): See indications for use statement below. 2. Indication(s) for use: The inui In-Home Urine Analysis Test System consists of the inui In-Home Urine Analysis Device and the inui Urine Analysis Mobile Application. The inui In-Home Urine Analysis Test System is intended for detecting the following parameters in urine: protein, glucose, leukocytes, nitrites, and ketones. The test results provide information regarding the status of urinary tract infections (UTI), proteinuria, glucosuria, and ketonuria. These results can be used as an aid for monitoring kidney functions, metabolic disorders (e.g. diabetes mellitus), and can be used in the screening for urinary tract infections (UTI). The inui In-Home Urine Analysis Device is intended for use as a Prescription Home use device. -
Supplementary Information Methods for Converting Cysteine to Dehydroalanine on Peptides and Proteins
Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011 Supplementary Information Methods for converting cysteine to dehydroalanine on peptides and proteins Justin M. Chalker,a Smita B. Gunnoo,a Omar Boutureira,a Stefanie C. Gerstberger,a Marta Fernández-González,a Gonçalo J. L. Bernardes,a Laura Griffin,b Hanna Hailu,b Christopher J. Schofield,a and Benjamin G. Davis*a a Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK b UCB Celltech, 208 Bath Road, Slough, Berkshire, SL1 3WE, United Kingdom [email protected] S1 Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011 Table of Contents General considerations S4 Synthesis of AcCysOMe S6 Synthesis of methyl ester of Ellman’s reagent (4) S6 Synthesis of disulfide 3 S7 Reaction of 3 and HMPT S8 BocAlaCysOMe (7) synthesis S9 BocAlaDhaOMe (8) using reduction-elimination S11 Reaction of disulfide 3 with DBU S13 Reaction of AcCysOMe and Mukaiyama’s reagent S14 MSH synthesis S15 BocSerOMe synthesis S16 BocThrOMe synthesis S16 BocAsnOMe synthesis S17 BocGlnOMe synthesis S18 BocTyrOMe synthesis S18 BocTrpOMe synthesis S20 BocMetOMe synthesis S20 BocHisOMe synthesis S21 BocLysOMe synthesis S22 HCl•PheOMe synthesis S25 MSH reaction with BocSerOMe S26 MSH reaction with BocThrOMe S26 MSH reaction with BocAsnOMe S26 MSH reaction with BocGlnOMe S27 MSH reaction with BocTyrOMe S27 MSH reaction with BocTrpOMe S27 MSH -
Kinetic Direct Peptide Reactivity Assay (Kdpra): Validation Study Report
Kinetic DPRA Validation Study Report 6 March 2020 Kinetic Direct Peptide Reactivity Assay (kDPRA): Validation Study Report Lead Laboratories and Study Management: BASF SE Britta Wareing Phone: +49 621 60-58107, Email: [email protected] Dr. Susanne Kolle Phone: +49 621 60-56731, Email: [email protected], Experimental Toxicology and Ecology Postal Address: BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany Responsibilities: Protocol authorship Coordination between laboratories Organisation of test chemical procurement Givaudan Schweiz AG Dr. Andreas Natsch Phone: +41 44 824 21 05, Email: [email protected]; Tina Haupt Phone: +41 44 824 25 15, Email: [email protected] Postal Address: Department of in vitro molecular screening, Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland Responsibilities: Test chemical selection Optimisation of rate constant calculation in evaluation sheet and cut-off refinement Biostatistics Naïve Test Laboratories: Institute for In Vitro Sciences (IIVS), 30 West Watkins Mill Road Suite 100, Gaithersburg, MD 20878, USA: Contact persons: Erin H Hill ([email protected]), Hans Raabe ([email protected]), Rishil Kathawala ([email protected]) Procter & Gamble, Mason Business Center, DS3-812, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA: Contact persons: Cindy Ryan ([email protected]) and Petra Kern ([email protected]) Charles River Laboratories Den Bosch BV, Hambakenwetering 7, 5231 DD ‘s-Hertogenbosch, The Netherlands: Contact persons: Walter Westerink ([email protected]), -
Color Test Reagents/Kits for Preliminary Identification of Drugs of Abuse
U.S. Department of Justice Office of Justice Programs National Institute of Justice National Institute of Justice Law Enforcement and Corrections Standards and Testing Program Color Test Reagents/Kits for Preliminary Identification of Drugs of Abuse NIJ Standard–0604.01 ABOUT THE LAW ENFORCEMENT AND CORRECTIONS STANDARDS AND TESTING PROGRAM The Law Enforcement and Corrections Standards and Testing Program is sponsored by the Office of Science and Technology of the National Institute of Justice (NIJ), U.S. Department of Justice. The program responds to the mandate of the Justice System Improvement Act of 1979, which directed NIJ to encourage research and development to improve the criminal justice system and to disseminate the results to Federal, State, and local agencies. The Law Enforcement and Corrections Standards and Testing Program is an applied research effort that determines the technological needs of justice system agencies, sets minimum performance standards for specific devices, tests commercially available equipment against those standards, and disseminates the standards and the test results to criminal justice agencies nationally and internationally. The program operates through: The Law Enforcement and Corrections Technology Advisory Council (LECTAC), consisting of nationally recognized criminal justice practitioners from Federal, State, and local agencies, which assesses technological needs and sets priorities for research programs and items to be evaluated and tested. The Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology, which develops voluntary national performance standards for compliance testing to ensure that individual items of equipment are suitable for use by criminal justice agencies. The standards are based upon laboratory testing and evaluation of representative samples of each item of equipment to determine the key attributes, develop test methods, and establish minimum performance requirements for each essential attribute.