(B.Sc.) in Biological Sciences Under CBCS Department of Life Science

Total Page:16

File Type:pdf, Size:1020Kb

(B.Sc.) in Biological Sciences Under CBCS Department of Life Science Structure and Detailed Syllabus of the Undergraduate Course (B.Sc.) in Biological Sciences under CBCS Department of Life Sciences Presidency University Department of Life Sciences (Faculty of Natural and Mathematical Sciences) Presidency University Hindoo College (1817-1855), Presidency College (1855-2010) 86/1, College Street, Kolkata - 700 073 West Bengal, India 0 | P a g e Content Topic Page No. A. Semester-wise Course Structure and Module Compositions 3 B. Detailed Syllabus for respective Modules 6 Core Course BIOS01C1: Chemistry 5 BIOS01C2: Light and Life 6 BIOS02C3: Biophysics 7 BIOS02C4: Biodiversity 8 BIOS03C5: Proteins and Enzymes 10 BIOS03C6: Cell Biology 11 BIOS03C7: Ecology 13 BIOS04C8: Systems Physiology 14 BIOS04C9: Molecular Biology 15 BIOS04C10: Metabolism and Integration 17 BIOS05C11: Growth and Reproduction 18 BIOS05C12: Genetics 19 BIOS06C13: Defense Mechanisms 21 BIOS06C14: Evolutionary Biology 22 Discipline Specific Elective BIOS05DSE1: Biostatistics & Bioinformatics 25 BIOS05DSE2: Analytical Techniques in Biology 26 BIOS06DSE3: Stress Biology 27 BIOS06DSE4: Classification, Biosystematics and Molecular Analysis 28 Ability Enhancement Compulsory Course AE-1: English communication AE-2: Environmental science Skill Enhancement Elective Courses BIOS03SEC1: Public Health and Management 29 1 | P a g e BIOS04SEC2: Recombinant DNA Technology 29 Generic Elective (GE) BIOS01GE1: World of Animals 31 BIOS02GE2: Economic applications of plant and microbial biotechnology 31 BIOS03GE3: Modern Lifestyle, Behaviors and Ailments 32 BIOS04GE4: Macromolecules of Life 33 Suggested Reading List 34 2 | P a g e Semester-wise Modules of the Undergraduate Course in Biological Sciences (Major) under CBCS Department of Life Sciences, Presidency University, Kolkata Sem Course Type este Skill Enhancement Core Course Department Specific Elective Generic Elective r Course BIOS01C1: BIOS01GE1: World of Animals Chemistry First BIOS01C2: Light and Life BIOS02GE2: Economic BIOS02C3: applications of plant and Sec Biophysics microbial biotechnology ond BIOS02C4: Biodiversity BIOS03C5: BIOS03SEC1: Public BIOS03GE3: Modern Lifestyle, Proteins Health and Behaviors and Ailments and Enzymes Management Thir BIOS03C6: Cell d Biology BIOS03C7: Ecology BIOS04SEC2: BIOS04C8:Systems BIOS04GE4:Macromolecules of Recombinant DNA Physiology Life Technology Fou BIOS04C9:Molecul rth ar Biology BIOS04C10:Metab olism and Integration BIOS05C11:Growt BIOS05DSE1: Biostatistics & h Bioinformatics Fift and Reproduction h BIOS05C12: BIOS05DSE2: Analytical Genetics Techniques in Biology BIOS06C13:Defens BIOS06DSE3:Stress Biology e Mechanisms Sixt h BIOS06C14: BIOS06DSE4: Classification, Evolutionary Biosystematics and Molecular Biology Analysis Academic Session: Each Semester shall contain at least 16 Teaching Weeks Odd Semesters: Semesters One, Three and Five - July to December Even Semesters: Semesters Two, Four and Six- January to June 3 | P a g e Credit Allocation and Marks Distribution for the Undergraduate Course in Biological Sciences (Major) under CBCS Department of Life Sciences, Presidency University, Kolkata Credits Marks Seme Course Type Paper Code Course Name Pract Tutor Tota Theo Practi Tutor ster Theory Total ical ial l ry cal ial First Core Course BIOS01C1 Chemistry 4 2 6 70 30 100 First Core Course BIOS01C2 Light and Life 4 2 6 70 30 100 First Generic Elective BIOS01GE1 World of Animals 4 2 6 70 30 100 Ability First Enhancement ENVS/ English Commination 4 4 100 100 Course Secon Core Course BIOS02C3 Biophysics 4 2 6 70 30 100 d Secon Core Course BIOS02C4 Biodiversity 4 2 6 70 30 100 d Secon Economic applications of plant Generic Elective BIOS02GE2 4 2 6 70 30 100 d and microbial biotechnology Ability Secon Enhancement ENVS/ English Commination 4 4 100 100 d Course Third Core Course BIOS03C5 Proteins and Enzymes 4 2 6 70 30 100 Third Core Course BIOS03C6 Cell Biology 4 2 6 70 30 100 Third Core Course BIOS03C7 Ecology 4 2 6 70 30 100 Modern Lifestyle, Behaviors and Third Generic Elective BIOS03GE3 4 2 6 70 30 100 Ailments Skill Enhancement Third BIOS03SEC1 Public Health and Management 4 4 100 100 Course Fourt Core Course BIOS04C8 Systems Physiology 4 2 6 70 30 100 h Fourt Core Course BIOS04C9 Molecular Biology 4 2 6 70 30 100 h Fourt Core Course BIOS04C10 Metabolism and Integration 4 2 6 70 30 100 h Fourt Macromolecules of Life Generic Elective BIOS04GE4 4 2 6 70 30 100 h Fourt Skill Enhancement BIOS04SEC2 Recombinant DNA Technology 4 4 100 100 h Course Fifth Core Course BIOS05C11 Growth and Reproduction 4 2 6 70 30 100 Fifth Core Course BIOS05C12 Genetics 4 2 6 70 30 100 Department Fifth BIOS05DSE1 Biostatistics & Bioinformatics 4 2 6 70 30 100 Specific Elective Department Fifth BIOS05DSE2 Analytical Techniques in Biology 4 2 6 70 30 100 Specific Elective Sixth Core Course BIOS06C13 Defense Mechanisms 4 2 6 70 30 100 Sixth Core Course BIOS06C14 Evolutionary Biology 4 2 6 70 30 100 Department Sixth BIOS06DSE3 Stress Biology 4 2 6 70 30 100 Specific Elective Department Classification, Biosystematics Sixth BIOS06DSE4 4 2 6 70 30 100 Specific Elective and Molecular Analysis Total Credit 148 Total Marks 2600 4 | P a g e Semester I: BIOS01C-1: CHEMISTRY (THEORY) Credits - 6: (Theory- 04, Practical- 02) Theory Credit : 4 Contact Hours per Week : 4 Unit 1 Chemical Thermodynamics and kinetics Qualitative idea of thermodynamics. First Law of Thermodynamics: Calculation of work (w), heat (q), changes in internal energy (ΔE) and enthalpy (ΔH) for expansion or compression of ideal gases under isothermal and adiabatic conditions for both reversible and irreversible processes. Calculation of w,q, ΔE, and ΔH for processes involving changes in physical states. Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formation, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature Kirchhoff’s equation. Second law of thermodynamics, concept of entropy, Gibbs free energy and Helmoltz free energy. Calculations of entropy change and free energy change for reversible and irreversible processes under isothermal and adiabatic conditions. Criteria of spontaneity, Gibbs Helmholtz equation. Maxwell’s relations. Activation energy and transition-state theory; Different orders of chemical reactions, free energy and chemical reaction. Unit 2 Chemical Bonding and Molecular Structure Ionic Bonding Lattice energy and solvation energy. Born-Haber cycle and its applications, polarizing power and polarizability, Fajan’s rules, ionic character in covalent compounds, Covalent Bonding: VB Approach, Lewis theory, VSEPR theory to explain the shapes of molecules, salient features of the Valence bond (VB) theory and the concept of hybridization, MO Approach : limitations of the VB approach, salient features of the MO theory. Rules for the LCAO method, bonding and anti-bonding MOs and their characteristics for s-s-, s-p and p-p combinations of atomic orbitals, nonbonding combinations of orbitals. Unit 3 Fundamentals of Organic Chemistry Hybridization in organic compounds, cleavage of covalent bond, homolysis and heterolysis, Electronic effects: Electronic effects and their applications – inductive, resonance and hyperconjugation effects. Structure and relative stability of reactive carbon species – carbocations, carbanions, free radicals and carbenes, Molecular Forces : types of intermolecular and intra-molecular forces and their characteristics: dipole-dipole, Dipole induced dipole and dispersion (London) forces. Hydrogen bond (both intramolecular and intermolecular, Aromaticity. Unit 4 Stereochemistry Stereochemistry and its importance. Geometrical isomerism, cis-trans and E/Z nomenclature. Optical isomerism – optical activity, plane polarized light, enantiomerism, chirality, specific molar rotation, Stereoisomerism with two chiral 5 | P a g e centrers: Diastereomers, mesoisomers, Resolution of racemic modification. Projection diagrams of stereoisomers: Fischer, Newman and Sawhorse projections. Relative Configuration: D/L designation. Absolute Configuration: R/S designation of chiral centres. Practical Credit : 2 Contact Hours per Week : 4 1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture 2. Estimation of oxalic acid by titrating it with KMnO4. 3. Estimation of Fe (II) ions by titrating it with K2Cr2O7 using internal indicator 4. Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide 5. Separation of the components of a given mixture of two amino acids by paper chromatography. 6. Separation of sugars present in the given mixture by paper chromatography. SEMESTER – I BIOS01C-2: LIGHT AND LIFE (THEORY) Credits - 6: (Theory- 04, Practical- 02) Theory Credit : 4 Contact Hours per Week : 4 Unit 1 Nature of light, spectrum of light which is useful/ harmful (ionizing radiation) for various biological processes in life of plants and animals. Unit of light energy (Photon, quantum), Measurement of light (Lux). Introduction to pigments/receptors of light: chlorophylls, carotenoids, phycobilinoproteins, bacteriochlorophylls, phytochromes Photoreception in animals, evolution of eye and visual processing in vertebrate retina. Unit 2 Photosynthetic equation, Light and dark reactions, mechanism of photolysis of water and oxygen evolution, O2 evolving complex; C3, C4, CAM plants, structure of chloroplast and quantasome, Anoxygenic
Recommended publications
  • Self-Assembly of the Protocell from a Self-Ordered Polymer"
    https://ntrs.nasa.gov/search.jsp?R=19680013724 2020-03-12T08:56:08+00:00Z Self-Assembly of the Protocell from a Self-ordered Polymer" Paper presented to International Convention of Biochemists, Bangalore, India 7 September 1967 GPO PR,CE $ % CFSTI PRICE(S) $ Hard copy (HC)- - Microfiche (MF) - - ff 653 July65 I *Since 1960, this research has been aided by the National Aeronautics and Space Administration, currently Grant no. NsG-689. Contribution no. 096 of the Institute of Molecular Evolution. Sidney W. Fox Institute of Molecular Evolution University of Miami Coral Gables, Florida, U.S.A. -1- The problem of the origin of life, or in truly perceptive nineteenth century terms, the problem of spontaneous generation, has often been regarded as one of overwhelming complexity. Upon analysis, with the aid of hindsight, this problem loses some of its imponderability. The aspect of evolution which first received major attention was that of the progression, in principle, from primitive cell to contemporary cell and to contemporary multicellular organisms, This stage is the one that has been illuminated mechanistically by Darwin's theory of selection. We can now regard this stage as far more intri- cate and involved than the emergence of primitive life from the primordial reactant gases. By such an analysis, the primordial cell is emphasized, the highly ramified later stages are removed from purview, and the limits of the meaning- ful problem are identified. The preorganismic stage can also be analyzed. For intellectual convenience, it may be divided into two or three parts. The first of these parts is that of the spontaneous organic synthesis involved in the production of the small organic molecules which are necessary for contemporary and, presumably for, primitive organisms.
    [Show full text]
  • Biotech II Lab Manual
    Biotech 2 Lab Manual Version 1.0 Table of Contents Unit A: Laboratory Techniques Lab 1: Lab Safety Lab 2: Reviewing Measurements Lab 3: Protein Determination Lab 4 : Gram Staining Lab 5: Antibiotic Assay Lab 6: Cell Culturing Labs Lab 7: Fermentation Lab 8: Experimenting with Physarium Unit B1: Gene Expression Lab 9: pBLU Transformation Unit B2: DNA and Cloning Lab 10: PCR Cloning a. Isolating DNA b. PCR c. Cleaning and Preparing PCR Product d. Ligation and Transformation e. Plasmid Preps f. Restriction Digests Lab 11: DNA Chips/Arrays Lab 12: Bioinformatics Unit B3. Proteins as Products Lab 13: The Action of Enzymes on Apple Juice Production Lab14: Enzyme Kinetics Lab15: Developing an Assay to Determine Protease Activity Lab16: Assaying for Amylase Activity Lab17: Searching for Native Amylase Activity Lab18: Using the Spectrophotometer to Study Amylase Lab19: Protein Purification of Amylase a. Dialysis of Amylase b. Ion-Exchange Chromatography c. Determining Protein Concentration of Amylase d. Characterizing Proteins with SDS-PAGE e. Assaying Amylase Activity Unit C: Therapeutic Applications of Biotechnology Lab 20: Immunodiffusion Assay Lab 21: ELISA Assay Lab 22: Effect of Drugs on Daphnia Lab 23: Activities in Regenerative Medicine Lab 1: Creating a Safe and Effective Laboratory Introduction A lab dealing with biotechnology can have several potential dangers. It is important that you know which equipment to use and how to use it safely. It is also important to know what to do when accidents happen. Understanding the nature of hazardous materials and equipment can help you reduce your risk and create a safe environment in which to work.
    [Show full text]
  • Thermo Bca Assay Protocol
    Thermo Bca Assay Protocol Flutiest and frore Zary mulct, but Eddie spaciously roose her Nestorius. Barefoot Jimbo endued or seise some consecutiveness soli, however gambrel Ingmar botanizes growlingly or misspends. Said Kareem presumes his gooseberry disparts intolerably. Use needleresistant gloves to break its lid should the ampule on the mercury toward the steel of the vial and dispose of beautiful glass bar in a plastic sharps container, or use ampule snapper. Subscription will auto renew annually. Reason why detergent in the assay and past, that the product. Though BCA method takes longer time grace the test procedure than PRM method it first be recommended for routine use feed to accuracy of the results. Reduction of graphene oxide by resveratrol: a longer and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. In presence of an absorbing solution, is inherent fluorescence is quenched and cannot decrease in fluorescent signal can be used to measure colorimetric assays. The immune system relies on diverse mechanisms working in concert to justice the boundary from infection and to identify and remove aberrant or damaged cells. Cellular metabolism comprises a order of biochemical reactions that link in concert within the cells of living organisms. Criteria for judging precision and accuracy in method development and evaluation. Raise the profile of did research project by leading a food Issue. Establish a blank using an appropriate buffer. Protein standards and samples were already in severe and loaded with remote single channel pipettor. Successful use enhance the learning algorithm improves outcome just an integrated, and glycosylated proteins.
    [Show full text]
  • HIGH SCHOOL COURSE OUTLINE (Revised June 2011)
    OFFICE OF CURRICULUM, INSTRUCTION, & PROFESSIONAL DEVELOPMENT HIGH SCHOOL COURSE OUTLINE (Revised June 2011) Department Science Course Title Biotechnology 1-2 Course Code 3867 Abbreviation Biotech 1-2 Grade Level 10, 11 Grad Requirement No Credits per Approved Course Length 2 semesters 5 No Required No Elective Yes Semester for Honors Health Science and Biotechnology Research CTE Industry Sector CTE Pathway Medical Technology and Development Prerequisites Biology 1-2 with a "C" or better Co-requisites Integrated Math Program (IMP) 5-6 maintaining a “C” or better Articulated with LBCC No Articulated with CSULB No Meets UC “a-g” Requirement Yes (d) Meets NCAA Requirement Yes COURSE DESCRIPTION: Biotechnology 1-2 is a course designed to give students a comprehensive introduction to the scientific concepts and laboratory research techniques currently used in the field of biotechnology. Students attain knowledge about the field of biotechnology and deeper understanding of the biological concepts used. In addition, students develop the laboratory, critical thinking, and communication skills currently used in the biotechnology industry. Furthermore, students will explore and evaluate career opportunities in the field of biotechnology through extensive readings, laboratory experiments, class discussions, research projects, guest speakers, and workplace visits. The objectives covered in this course are both academic and technical in nature and are presented in a progressively rigorous manner. COURSE PURPOSE: GOALS (Student needs the course is intended to meet) Students will: CONTENT • Students will learn the basic biological and chemical processes of cell, tissues, and organisms. They will also learn the historical experiments that led to the central dogma of molecular biology and understand the basic processes of DNA replication, transcription and translation.
    [Show full text]
  • RNA Localization (1960-1961)
    Tuesday. Tissue-Specific Gene Expression III (1957-1959) 337a 1957 1958 ANTIGEN PRESENTATION AFTER DNA VACCINATION: GENERATION DIFFERENTIAL DISPLAY RT-PCR (DDRT-PCR) AS A TOOL TO STUDY OF IMMUNE RESPONSES BY EXPRESSION OF A VIRAL PROTEIN IN GENE EXPRESSION: OPTIMIZATION AND APPLICATION. ((K.R. MUSCLE CELLS IN VIVO. ((effrey B. Ulmer, R. Randall Deck, Corrille M. Luehrsenl, M.G. Brubacherl, S. Cumberledge2, A. Lloyd3, and P.E. DeWitt, John J. Donnelly, and Margaret A. Liu)) Department of Virus & Cell MayrandI)) IPerkin Elmer Corp., Applied Biosystems Division, Foster City, Biology, Merck Reearch Laboratories, West Point, PA 19486. CA 94404; 2Dept. of Biochemistry, Univ. of Massachusetts, Amherst, MA CA 94305. Transfection of muscle cells viw has been acdhieved by intramuscular 01003; 3Dept. of Biological Sciences, Stanford Univ., Stanford, injection of naked plasmid DNA (Wolff ct al, Science 247, 1465, 1990). We gene underlies the phenotypic differences between cell utilized this technique as a novel means of vaccination and generated protective Differential expression types. is a standard tool to identify cell-mediated and humoral immune responses agaist influenza in mice (Uner cDNA library construction and screening and clone the sequences of differentially expressed mRNAs. However, c al, Science 259, 1745, 1993). Tlhse results sugested that muscle cells may be in antigen presentation leading to the generation of the immune traditional cDNA libraries that rely on plasmid or phage vectors and passage involved E. from several drawbacks including the requirement of responses observed after DNA injection. However, injected DNA may have been through coli suffer libraries intralized and expessed by other cells and, moreover, muscle cells are not large amounts of polyA+ mRNA, an intensive labor commitment and considered to be antigen presenting cells.
    [Show full text]
  • Energy, Structure and Carbon Dioxide: a Realistic View of the Organism
    Energy, structure and carbon dioxide: A realistic view of the organism by Ray Peat, PhD “But the philosophy of Causes & Consequences misled Lavater as it has all his Contemporaries. Each thing is its own cause & its own effect.” W. Blake, c. 1788 What could be more important to understand than biological energy? Thought, growth, movement, every philosophical and practical issue involves the nature of biological energy. The question of biological energy is usually handled in the manner of the cosmologist who explained that the earth rests on the back of an elephant; when asked what the elephant stood on, the cosmologist replied that “it’s elephants all the way down.” Several decades ago, it was discovered that ATP mediates many processes in the energized cell, but there is still fundamental disagreement on the question of how ATP is synthesized, and how its energy is used to produce movement, to control the movement of water in cells and organs and to regulate the ionic balance of cells and fluids, and even why its absence produces rigor mortis. When people actually try to examine the question of how the “high energy bond” of ATP can be transformed into usable energy, they sometimes find that it is easier to propose fundamental changes in the laws of physics than to find an explanation within ordinary physics and chemistry. (For example, Physiologie 1986 Jan-Mar;23(1):65-8, “The non- conservation of parity in the domain of elementary particles and a possible mechanism for the delivery of energy from the ATP molecule,” Portelli, C.) More often, biologists simply prefer not to go beyond the first or second elephant.
    [Show full text]
  • Proteinoid Nanocapsules for Drug Delivery Applications
    polymers Article Engineering of Doxorubicin-Encapsulating and TRAIL-Conjugated Poly(RGD) Proteinoid Nanocapsules for Drug Delivery Applications Elad Hadad 1, Safra Rudnick-Glick 1, Ella Itzhaki 1, Matan Y. Avivi 2, Igor Grinberg 1, Yuval Elias 1 and Shlomo Margel 1,* 1 Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; [email protected] (E.H.); [email protected] (S.R.-G.); [email protected] (E.I.); [email protected] (I.G.); [email protected] (Y.E.) 2 The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; [email protected] * Correspondence: [email protected]; Tel.: +972-52-889-8600 Received: 8 October 2020; Accepted: 11 December 2020; Published: 16 December 2020 Abstract: Proteinoids are non-toxic biodegradable polymers prepared by thermal step-growth polymerization of amino acids. Here, P(RGD) proteinoids and proteinoid nanocapsules (NCs) based on D-arginine, glycine, and L-aspartic acid were synthesized and characterized for targeted tumor therapy. Doxorubicin (Dox), a chemotherapeutic drug used for treatment of a wide range of cancers, known for its adverse side effects, was encapsulated during self-assembly to form Dox/P(RGD) NCs. In addition, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which can initiate apoptosis in most tumor cells but undergoes fast enzyme degradation, was stabilized by covalent conjugation to hollow P(RGD) NCs. The effect of polyethylene glycol (PEG) conjugation was also studied. Cytotoxicity tests on CAOV-3 ovarian cancer cells demonstrated that Dox/P(RGD) and TRAIL-P(RGD) NCs were as effective as free Dox and TRAIL with cell viability of 2% and 10%, respectively, while PEGylated NCs were less effective.
    [Show full text]
  • UV Talk Letter Vol. 07
    C101-E120 UV Talk Letter Vol.7 UV Talk Letter BioSpec-nano Life Science UV-VIS Spectrophotometer Life science research involves the handling of extracted and purified nucleic acids (DNA, RNA) in conducting PCR (Polymerase Chain Reaction), quantitative PCR, cloning, base sequence determination, DNA micro-array analysis, etc. Nucleic acid analysis using ultraviolet-visible spectrophotometers is widely conducted to successfully guide these processing operations. This document introduces the BioSpec-nano UV-VIS spectrophotometer, which provides simple and quick analysis of micro-level nucleic acids. 1. BioSpec-nano Features The BioSpec-nano, unlike conventional spectrophotometers, adopts an optical system that does not rely on the use of cells (cuvettes). The optical system comprises a xenon flash lamp, an upper window, a target platform (fiber optic element housing), holographic grating, and photodiode array detector. Measurement with the BioSpec-nano is conducted by automatically sandwiching the sample between the upper window and target to achieve a fixed pathlength (0.2 mm or 0.7 mm). This type of optical system allows measurement of ultra-small sample volumes in the range of 1 – 2 μL, as well as undiluted high-concentration samples, greatly facilitating the analysis operation. Cell washing and drying with conventional instruments is an extremely time-consuming, tedious task, which greatly impedes the analysis operation. With the BioSpec-nano, however, cleaning the liquid-contact surfaces (upper window and target) is accomplished by a simple wiping of the wet surfaces. The automated mounting mechanism, which establishes the appropriate pathlength, and the automated liquid-contact surface wiping feature allow true drop-and-click analysis.
    [Show full text]
  • 1 BCH303 [Practical]
    BCH303 [Practical] 1 • The accurate quantitation of protein content is a critical step in protein analysis. • Importance of protein quantification ? • Depending on the accuracy required and the amount and purity of the protein available: ➔ different methods are appropriate for determining protein concentration. 2 • Methods: 1. Direct assay: measure the absorbance at 280 nm. 2. Colorimetric/fluorescent and reagent-based protein assay: Protein is added to the reagent, producing a color change or increased fluorescence in proportion to the amount added. • The most commonly used reagent-based techniques involve: ➢ Biuret test. ➢ Bradford test. ➢ Bicinchoninic acid assay (BCA assay). ➢ Lowry test. 3 • Best or ideal method ? WHY? • Each method has its advantages and disadvantages. • How to choose the appropriate method? ➔ Compatibility with the sample. ➔ Availability. ➔ Interfering substances . ➔ Accuracy. ➔ Sensitivity. ➔ Time. ➔ …. 4 Disadvantages and Method Sensitivity Time Reagent Interferences comments Zwitterionic Alkaline Similar color with all proteins. Low Moderate buffers, Biuret copper Destructive to protein 1-20 mg 20-30min Some amino sulphate samples. acids Ammonium sulphate, Time-consuming. Color varies High Slow Cu+2 Folin– glycine, Lowry with proteins. Destructive to 5 µg 40-60min Ciocalteau Zwitterionic, protein samples. buffers, Mercaptans Stable color, which varies Strongly basic with proteins. Reagent Coomassie Buffers, High Rapid commercially available. Bradford Brilliant Blue detergents 1 µg 15 min Destruction to protein G-250 TritonX-100, samples. SDS Discoloration of glassware. Cu2+, Compatible with detergents. bicinchoninic EDTA, DTT, High Slow Reagents commercially BCA acid Ammonium 1 µg 60 min available. Destructive to sulphate Protein samples. Useful for monitoring column Spectroph Purines, eluents. Nucleic acid Moderate Rapid -otometric - pyrimidines, absorption can be corrected.
    [Show full text]
  • States of Origin: Influences on Research Into the Origins of Life
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Influences on Research into the Origins of Life. Idan Ben-Barak Unit for the History and Philosophy of Science Faculty of Science The University of Sydney A thesis submitted to the University of Sydney as fulfilment of the requirements for the degree of Doctor of Philosophy 2014 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma of a University or other institute of higher learning.
    [Show full text]
  • Transferrin Fusion Protein Libraries Transferrin-Fusionsproteinbibliotheken Banques De Proteines De Fusion De La Transferine
    (19) & (11) EP 1 539 221 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 38/40 (2006.01) A61K 38/16 (2006.01) 23.12.2009 Bulletin 2009/52 A61K 38/41 (2006.01) C07K 14/79 (2006.01) (21) Application number: 03751903.0 (86) International application number: PCT/US2003/026779 (22) Date of filing: 28.08.2003 (87) International publication number: WO 2004/020588 (11.03.2004 Gazette 2004/11) (54) TRANSFERRIN FUSION PROTEIN LIBRARIES TRANSFERRIN-FUSIONSPROTEINBIBLIOTHEKEN BANQUES DE PROTEINES DE FUSION DE LA TRANSFERINE (84) Designated Contracting States: US-A1- 2003 221 201 AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR • PARK E ET AL: "Production and characterization of fusion proteins containing transferrin and (30) Priority: 30.08.2002 US 406977 P nerve growth factor" JOURNAL OF DRUG 10.03.2003 US 384060 TARGETING, HARWOOD ACADEMIC 09.07.2003 US 485404 P PUBLISHERS GMBH, DE, vol. 6, no. 1, 1998, pages 53-64, XP002960815 ISSN: 1061-186X (43) Date of publication of application: • PARISE F ET AL: "Construction and in vitro 15.06.2005 Bulletin 2005/24 functional evaluation of a low-density lipoprotein receptor/transferrin fusion protein as a (73) Proprietor: Biorexis Pharmaceutical Corporation therapeutic tool for familial New York, NY 10017-5755 (US) hypercholesterolemia" HUMAN GENE THERAPY, MARY ANN LIEBERT, NEW YORK ,NY, US, vol. (72) Inventors: 10, no. 7, 1 May 1999 (1999-05-01), pages • PRIOR, Christopher, P.
    [Show full text]
  • Protein Biochemistry -Practical
    BCH303 [Practical] Biochemistry department Lab (6): Detection and quantitative estimation of proteins by different methods Aim: • To detect the presence of a protein or peptides using biuret test. • To determine the concentration of extracted protein by different methods. Introduction: The quantitation of protein content is important and has many applications in clinical laboratory practices and in research especially in the field of biochemistry. The accurate quantitation of protein content is a critical step in protein analysis. (1) Protein quantitation is often necessary before processing protein samples for isolation, separation and analysis by chromatographic, electrophoretic and immunochemical techniques. Depending on the accuracy required and the amount and purity of the protein available, different methods are appropriate for determining protein concentration. (2) The simplest and most direct assay method for proteins in solution is to measure the absorbance at 280 nm (UV range). Instead, several colorimetric and fluorescent, reagent-based protein assay techniques have been developed that are used by nearly every laboratory involved in protein research. Protein is added to the reagent, producing a color change or increased fluorescence in proportion to the amount added. The most commonly used techniques involve biuret test, Bradford test, bicinchoninic acid assay (BCA assay) and Lowry test. (2) No one reagent can be considered to be the ideal or best protein assay method. Each method has its advantages and disadvantages (Table 1). The choice among available protein assays is usually based on the compatibility of the protein assay method with the samples. Additionally, one must consider potential interfering substances included in samples that may affect certain assay methods, as well as the accuracy, reproducibility and incubation time desired.
    [Show full text]