Juvenile Lost River and Shortnose Sucker Year-Class Formation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intestinal Helminths of the White Sucker, Catostomus Commersoni (Lacepede), in SE Wisconsin
OF WASHINGTON, VOLUME 41, NUMBER 1, JANUARY 1974 81 Intestinal Helminths of the White Sucker, Catostomus commersoni (Lacepede), in SE Wisconsin OMAR M. AMIN Science Division, University of Wisconsin-Parkside, Kenosha 53140 ABSTRACT: Five species of helminths were recovered from the intestine of the white sucker, Catostomus commersoni (Lacepede), in southeastern Wisconsin. Hosts were seined in five sites in both the Root River (Milwaukee and Racine counties; autumn 1971) and the Pike River (Racine and Kenosha counties; autumn 1972). The helminths are Triganodistomum attenuatum Mueller and Van Cleave, 1932 (Trem- atoda: Lissorchiidae), new locality record; Eiacetabulum macrocephalum McCrae, 1962 (Cestoda: Caryophyllaeidae), new state record; Biacetabulum biloculoides Mackiewicz and McCrae, 1965 (Cestoda: Caryophyllaeidae), new state record; Acanthocephahis dims (Van Cleave, 1931) Van Cleave and Townsend, 1936, new host and state record; Dorylaimtis sp. (?) Dujardin, 1845 (Nematoda: Dory- laimidae), a nonparasitie nematode reported for the first time in this fish. Distribution, structural obser- vations, and host-parasite relationships of the above species are discussed. Previous reports of fish parasites in Wis- upon recovery were placed in 70% alcohol. consin were confined to the geographical Hosts were classed in one of three size classes northeast and west (Pearse, 1924a), north according to their total length, 5-9.9, 10-14.9, (Bangham, 1946), northwest (Fischthal, 1947, and 15-37 cm. 1950, 1952), and east (Anthony, 1963). These Trematodes and cestodes were stained in reports dealt only with host records. Literature Semichon's carmine, cleared in xylene, and on the ecology or host-parasite relationship of whole-mounted in Canada balsam. Acantho- fish parasites in Wisconsin is relatively scarce cephalans were fixed in Bouin's fluid, stained (Marshall and Gilbert, 1905; Pearse, 1924b; in Harris' hematoxylin, cleared in beechwood Cross, 1938). -
(Nematoda: Thelazioidea) in the Blue Sucker, Cycleptus Elongatus (Lesueur, 1817), from Illinois
Transactions of the Illinois State Academy of Science received 12/10/01 (2002), Volume 95, #2, pp. 107 - 109 accepted 2/22/02 First Record of Rhabdochona cascadilla Wigdor, 1918 (Nematoda: Thelazioidea) in the Blue Sucker, Cycleptus elongatus (Lesueur, 1817), from Illinois William G. Dyer and William J. Poly Department of Zoology Southern Illinois University Carbondale, Illinois 62901-6501 ABSTRACT Rhabdochona cascadilla was detected in the intestine of Cycleptus elongatus from the Mississippi River in Randolph County, Illinois. This constitutes the first record of this rhabdochonid nematode in the blue sucker and the only internal helminth for this host. INTRODUCTION Nematodes of the genus Rhabdochona Railliet, 1916 (Thelazioidea, Rhabdochonidae) are cosmopolitan in distribution as intestinal parasites of freshwater fishes (Moravec and Coy Otero, 1987; Moravec, 1994). Approximately 96 nominal species have been recognized of which 19 have been reported from North and South America (see Sanchez-Alvarez et al., 1998). Of rhabdochonid nematodes reported from North America, Rhabdochona cascadilla Wigdor, 1918 has been recorded in 13 families, 30 genera, and 53 species of freshwater fishes across Canada and the United States (Hoffman, 1999). Identification of Rhabdochona species is difficult as many of them have been inadequately or erroneously described, and as pointed out by Sanchez-Alvarez et al. (1998), a detailed taxonomic revision of all putative species in this group warrants initiation. MATERIALS AND METHODS A single adult female blue sucker (557 mm standard length) was collected incidentally by electrofishing on 24 October 1996 from the Mississippi River just below the mouth of the Kaskaskia River, Randolph County, Illinois and was transported alive to the laboratory. -
Digenean Metacercaria (Trematoda, Digenea, Lepocreadiidae) Parasitizing “Coelenterates” (Cnidaria, Scyphozoa and Ctenophora) from Southeastern Brazil
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 53(1/2):39-45, 2005 DIGENEAN METACERCARIA (TREMATODA, DIGENEA, LEPOCREADIIDAE) PARASITIZING “COELENTERATES” (CNIDARIA, SCYPHOZOA AND CTENOPHORA) FROM SOUTHEASTERN BRAZIL André Carrara Morandini1; Sergio Roberto Martorelli2; Antonio Carlos Marques1 & Fábio Lang da Silveira1 1Instituto de Biociências da Universidade de São Paulo Departamento de Zoologia (Caixa Postal 11461, 05422-970, São Paulo, SP, Brazil) 2Centro de Estudios Parasitologicos y Vectores (CEPAVE) (2 Nro. 584 (1900) La Plata, Argentina) e-mails: [email protected], [email protected], [email protected], [email protected] A B S T R A C T Metacercaria specimens of the genus Opechona (Trematoda: Digenea: Lepocreadiidae) are described parasitizing “coelenterates” (scyphomedusae and ctenophores) from Southeastern Brazil (São Paulo state). The worms are compared to other Opechona species occurring on the Brazilian coast, but no association has been made because only adult forms of these species have been described. Suppositions as to the possible transference of the parasites are made. R E S U M O Exemplares de metacercárias do gênero Opechona (Trematoda: Digenea: Lepocreadiidae) são descritos parasitando “celenterados” (cifomedusas e ctenóforos) no sudeste do Brasil (estado de São Paulo). Os vermes foram comparados a outras espécies de Opechona ocorrentes no litoral brasileiro, porém nenhuma associação foi realizada devido às demais espécies terem sido descritas a partir de exemplares adultos. São apresentadas suposições sobre as possíveis formas -
Shortnose Sucker (Chasmistes Brevirostris) 5-Year Review Summary and Evaluation
Shortnose Sucker (Chasmistes brevirostris) 5-Year Review Summary and Evaluation U.S. Fish and Wildlife Service Klamath Falls Fish and Wildlife Office Klamath Falls, Oregon July 2007 5-YEAR REVIEW Shortnose Sucker (Chasmistes brevirostris) TABLE OF CONTENTS 1.0 GENERAL INFORMATION.......................................................................................... 3 1.1. Reviewers............................................................................................................................ 3 1.2. Methodology used to complete the review....................................................................... 3 1.3. Background ........................................................................................................................ 3 2.0 REVIEW ANALYSIS....................................................................................................... 4 2.1. Application of the 1996 Distinct Populations Segment (DPS) policy ............................ 4 2.2. Biology and Habitat ........................................................................................................... 5 2.3. Recovery Criteria............................................................................................................. 13 2.4. Five-Factor Analysis ........................................................................................................ 16 2.5. Synthesis............................................................................................................................ 30 3.0 RESULTS ....................................................................................................................... -
Symbiosis (Symbiotic Relationship)
Symbiosis (Symbiotic Relationship) 1 In the wonderful world of nature, some animals love forming partnerships with other animal species, with plants, and with microorganisms. We have a special name for such interesting arrangements. We call it "symbiosis" that literally means "living together". 2 Do both species involved in a symbiotic relationship benefit from their partnership? Well, the question itself is open for debate. While some scientists restrict the meaning of symbiosis to a "win-win" situation for both participants, others disagree. Using a broader definition, we are going to explore the three types of symbiotic partnerships. 3 When two species engage in a mutually beneficial symbiotic relationship, they are in the so- called "mutualism" type of symbiosis. To understand mutualism better, let's examine the interaction between clown fish and an anemone. While most fish stay away from an anemone for fear of touching its poisonous tentacles, clown fish have a special coat on their skin that protects them from getting stung. (This trick does not work for all anemones though. Clown fish can only have symbiotic relationships with 10 of the 1,000 different anemone species in the world.) Swimming carefree and unharmed among their host's deadly tentacles, clown fish know very well that their predators do not dare to come near them. Plus, clown fish get to pick up and eat the leftover bits discarded by their landlord. What does the anemone get in return for offering clown fish a safe haven? Well, first and foremost, it kills and feeds on fish that are eyeing its tenant! Aside from that, clown fish pay their rent by cleaning up food scraps and dead anemone tentacles. -
Literature Based Characterization of Resident Fish Entrainment-Turbine
Draft Technical Memorandum Literature Based Characterization of Resident Fish Entrainment and Turbine-Induced Mortality Klamath Hydroelectric Project (FERC No. 2082) Prepared for PacifiCorp Prepared by CH2M HILL September 2003 Contents Introduction...................................................................................................................................1 Objectives ......................................................................................................................................1 Study Approach ............................................................................................................................2 Fish Entrainment ..............................................................................................................2 Turbine-induced Mortality .............................................................................................2 Characterization of Fish Entrainment ......................................................................................2 Magnitude of Annual Entrainment ...............................................................................9 Size Composition............................................................................................................10 Species Composition ......................................................................................................10 Seasonal and Diurnal Distribution...............................................................................15 Turbine Mortality.......................................................................................................................18 -
Ecology of Upper Klamath Lake Shortnose and Lost River Suckers
ECOLOGY OF UPPER KLAMATH LAKE SHORTNOSE AND LOST RIVER SUCKERS 4. The Klamath Basin sucker species complex 1999 ANNUAL REPORT (partial) SUBMITTED TO U. S. Biological Resources Division US Geological Survey 104 Nash Hall Oregon State University Corvallis, Oregon 97331-3803 & Klamath Project U. S. Bureau of Reclamation 6600 Washburn Way Klamath Falls, OR 97603 by Douglas F. ~arkle', Martin R. ~avalluzzi~,Thomas E. owli in^^ and David .Simon1 1Oregon Cooperative Research Unit 104 Nash Hall Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon 97331-3803 E -mai1 : douglas.markle@,orst.edu 2Department of Biology Arizona State University Tempe, AZ 85287-1501 Phone: 480-965-1626 Fax: 480-965-2519 E -mai 1 : [email protected] July 26, 2000 There are 13 genera and 68 species of catostomids (Nelson 1994) with three genera and four species occurring in Klamath Basin (Bond 1994)- Catostomus rimiculus Gilbert and Snyder, 1898 (Klamath smallscale sucker, KSS), C. snyderi Gilbert 1898 (Klamath largescale sucker, KLS), Chasmistes brevirostris Cope, 1879 (shortnose sucker, SNS), and Deltistes luxatus (Cope, 1879) (Lost River sucker, LRS). Lost River and shortnose suckers are federally listed endangered species (U.S. Fish and Wildlife Service 1988). The four Klamath Basin suckers are similar in overall body shape, but highly variable, and are distinguished by feeding-related structures, adult habitat and geography. The two Catostomus species have large lips, widely-spaced gillrakers, and are primarily river dwellers with C. snyderi mostly found in the upper basin and C. rimiculus in the lower basin and adjacent Rogue River. Deltistes luxatus has smaller lips, short "deltoid" Catostomus-like gillrakers, and is primariliy a lake dweller. -
Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09
Prepared in cooperation with the Bureau of Reclamation Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09 Scientific Investigations Report 2012–5016 U.S. Department of the Interior U.S. Geological Survey Cover: Inset: Larval sucker from Upper Klamath Lake, Oregon. (Photograph taken by Allison Estergard, Student, Oregon State University, Corvallis, Oregon, 2011.) Top: Photograph taken from the air of the flooded Williamson River Delta, Upper Klamath Lake, Oregon. (Photograph taken by Charles Erdman, Fisheries Technician, Williamson River Delta Preserve, Klamath Falls, Oregon, 2008.) Bottom left: Photograph of a pop net used by The Nature Conservancy to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photograph taken by Heather Hendrixson, Director, Williamson River Delta Preserve, Klamath Falls, Oregon, 2006.) Bottom middle: Photograph of a larval trawl used by Oregon State University to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photograph taken by David Simon, Senior Faculty Research Assistant, Oregon State University, Corvallis, Oregon, 2010.) Bottom right: Photograph of a plankton net used by the U.S. Geological Survey to collect larval suckers in Upper Klamath Lake and the Williamson River Delta, Oregon. (Photographer unknown, Klamath Falls, Oregon, 2009.) Dispersal of Larval Suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006–09 By Tamara M. Wood, U.S. Geological Survey, Heather A. Hendrixson, The Nature Conservancy, Douglas F. Markle, Oregon State University, Charles S. Erdman, The Nature Conservancy, Summer M. Burdick, U.S. Geological Survey, Craig M. Ellsworth, U.S. Geological Survey, and Norman L. -
Threats, Conservation Strategies, and Prognosis for Suckers (Catostomidae) in North America: Insights from Regional Case Studies of a Diverse Family of Non-Game fishes
BIOLOGICAL CONSERVATION Biological Conservation 121 (2005) 317–331 www.elsevier.com/locate/biocon Review Threats, conservation strategies, and prognosis for suckers (Catostomidae) in North America: insights from regional case studies of a diverse family of non-game fishes Steven J. Cooke a,b,*,1, Christopher M. Bunt c, Steven J. Hamilton d, Cecil A. Jennings e, Michael P. Pearson f, Michael S. Cooperman g, Douglas F. Markle g a Department of Forest Sciences, Centre for Applied Conservation Research, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4 b Centre for Aquatic Ecology, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820, USA c Biotactic Inc., 691 Hidden Valley Rd., Kitchener, Ont., Canada N2C 2S4 d Yankton Field Research Station, Columbia Environmental Research Center, United States Geological Survey, Yankton, SD 57078, USA e United States Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, School of Forest Resources, University of Georgia, Athens, GA 30602, USA f Fisheries Centre and Institute for Resources, Environment, and Sustainability, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 g Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA Received 10 December 2003; received in revised form 6 May 2004; accepted 18 May 2004 Abstract Catostomid fishes are a diverse family of 76+ freshwater species that are distributed across North America in many different habitats. This group of fish is facing a variety of impacts and conservation issues that are somewhat unique relative to more economically valuable and heavily managed fish species. Here, we present a brief series of case studies to highlight the threats such as migration barriers, flow regulation, environmental contamination, habitat degradation, exploitation and impacts from introduced (non-native) species that are facing catostomids in different regions. -
Myzopodidae: Chiroptera) from Western Madagascar
ARTICLE IN PRESS www.elsevier.de/mambio Original investigation The description of a new species of Myzopoda (Myzopodidae: Chiroptera) from western Madagascar By S.M. Goodman, F. Rakotondraparany and A. Kofoky Field Museum of Natural History, Chicago, USA and WWF, Antananarivo, De´partement de Biologie Animale, Universite´ d’Antananarivo, Antananarivo, Madagasikara Voakajy, Antananarivo, Madagascar Receipt of Ms. 6.2.2006 Acceptance of Ms. 2.8.2006 Abstract A new species of Myzopoda (Myzopodidae), an endemic family to Madagascar that was previously considered to be monospecific, is described. This new species, M. schliemanni, occurs in the dry western forests of the island and is notably different in pelage coloration, external measurements and cranial characters from M. aurita, the previously described species, from the humid eastern forests. Aspects of the biogeography of Myzopoda and its apparent close association with the plant Ravenala madagascariensis (Family Strelitziaceae) are discussed in light of possible speciation mechanisms that gave rise to eastern and western species. r 2006 Deutsche Gesellschaft fu¨r Sa¨ugetierkunde. Published by Elsevier GmbH. All rights reserved. Key words: Myzopoda, Madagascar, new species, biogeography Introduction Recent research on the mammal fauna of speciation molecular studies have been very Madagascar has and continues to reveal informative to resolve questions of species remarkable discoveries. A considerable num- limits (e.g., Olson et al. 2004; Yoder et al. ber of new small mammal and primate 2005). The bat fauna of the island is no species have been described in recent years exception – until a decade ago these animals (Goodman et al. 2003), and numerous remained largely under studied and ongoing other mammals, known to taxonomists, surveys and taxonomic work have revealed await formal description. -
Distribution and Biology of Suckers in Lower Klamath Reservoirs
DISTRIBUTION AND BIOLOGY OF SUCKERS IN LOWER KLAMATH RESERVOIRS 1999 FINAL REPORT SUBMITTED TO PacifiCorp 825 NE Multnomah Blvd., Ste. 1500 Portland, OR 97232 By Marc Desjardins & Douglas F. Markle 104 Nash Hall Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon 97331-3803 March 28, 2000 Abstract The objectives of this two-year study (1998-1999) were to document distribution, abundance, age class structure, recruitment success, and habitat use by all life history stages of shortnose and Lost River suckers in three lower Klamath River hydroelectric reservoirs (J. C. Boyle, Copco, and Iron Gate). Lost River sucker catches were sporadic (only 3 adult individuals total) and the focus of our analyses, therefore, shifted to shortnose suckers. Adult and larval suckers were found in all reservoirs both years. All life history stages (larvae, juveniles and adults) were found in J. C. Boyle during both years and in Copco in 1999. Juvenile suckers were not found in Copco in 1998. The number of adult shortnose suckers was highest in Copco reservoir (n=165), followed by J.C. Boyle (n=50) and Iron Gate (n=22). Larger and older individuals dominated Copco and Iron Gate reservoirs and little size structure was detected. J. C. Boyle tended to have smaller adult shortnose suckers and many size classes were present. Unidentifiable larval suckers were most abundant in Copco reservoir where historic spawning of shortnose suckers has been documented. Larval suckers in Copco and Iron Gate reservoirs were most abundant in mid to late June before quickly disappearing from catches. J. C. Boyle larval suckers peaked in mid July, attained larger sizes, and were caught later in the season. -
Upper Klamath Lake Fish Screen Program Draft Environmental Assessment
Upper Klamath Lake Fish Screen Program Draft Environmental Assessment Klamath Project, Oregon Mid-Pacific Region September 2007 U.S. Department of the Interior Bureau of Reclamation Mid-Pacific Region September 2007 Table of Contents Chapter 1: Need and Purpose......................................................................................................... 4 1.1 Statutory Authority ............................................................................................................. 5 1.2 Need and Purpose for Action.............................................................................................. 5 1.3 General Area Description and Location ............................................................................. 6 1.4 Relation Actions and Activities .......................................................................................... 7 1.4.1 Oregon Department of Fish and Wildlife Fish Screen Statutes................................... 7 1.4.2 Klamath Fish Passage Technical Committee............................................................... 7 1.4.3 U.S. Fish and Wildlife Service Ecosystem Restoration Program................................ 8 1.4.4 Oregon Watershed Enhancement Board...................................................................... 8 Chapter 2: Alternatives Considered............................................................................................... 8 2.1 Proposed Action and Alternatives .....................................................................................