On the Origins of Oxygenic Photosynthesis and Aerobic Respiration in Cyanobacteria Rochelle M

Total Page:16

File Type:pdf, Size:1020Kb

On the Origins of Oxygenic Photosynthesis and Aerobic Respiration in Cyanobacteria Rochelle M RESEARCH ◥ it is expected that genes for complex III would REPORT be congruent within the Cyanobacteria phylum. However, if photosynthesis is a derived feature of Oxyphotobacteria, and aerobic respiration evolved PHYLOGENETICS after the rise of oxygen, then the Cyanobacteria classes would be expected to have acquired their high-potential electron transport chains (ETCs) On the origins of oxygenic independently. This predicts that members of the different Cyanobacteria classes would have distantlyrelatedcomplexIIIsandcomplexIVs. photosynthesis and aerobic There are two evolutionarily unrelated groups of complex IIIs: the cytochrome bc complexes respiration in Cyanobacteria (including the cytochrome bc complex and cyto- 1 chrome b6f complex) and alternative complex Rochelle M. Soo,1* James Hemp,2* Donovan H. Parks,1 III (ACIII) (11, 12). The cytochrome bc com- Woodward W. Fischer,2† Philip Hugenholtz1† plexes are widespread among the Bacteria and Archaea, with lateral gene transfer playing an The origin of oxygenic photosynthesis in Cyanobacteria led to the rise important role in their distribution (12, 13). The of oxygen on Earth ~2.3 billion years ago, profoundly altering the course of cytochrome b6f complexes, which are only found evolution by facilitating the development of aerobic respiration and complex in Oxyphotobacteria, contain two hemes (ci and multicellular life. Here we report the genomes of 41 uncultured organisms f) along with extra cofactors that are usually related to the photosynthetic Cyanobacteria (class Oxyphotobacteria), including associated with photosynthesis (chlorophyll, b- members of the class Melainabacteria and a new class of Cyanobacteria carotene) (14).TheACIIIshaveonlybeenfound (class Sericytochromatia)thatisbasaltotheMelainabacteria and Oxyphotobacteria. in Bacteria, where they commonly occur in an All members of the Melainabacteria and Sericytochromatia lack photosynthetic operon with heme-copper oxygen reductases machinery, indicating that phototrophy was not an ancestral feature of (HCOs). There are also two evolutionarily un- the Cyanobacteria and that Oxyphotobacteria acquired the genes for photosynthesis related groups of complex IVs associated with on March 31, 2017 relatively late in cyanobacterial evolution. We show that all three classes aerobic respiration: the heme-copper oxygen re- independently acquired aerobic respiratory complexes, supporting the hypothesis ductases and the cytochrome bd oxidases. There that aerobic respiration evolved after oxygenic photosynthesis. are at least three major classes of HCOs—the A, B, and C families (15, 16). The A family has a very broad taxonomic distribution and is adapted he Cyanobacteria are one of the most [CBMW_12 (3)], an algae-associated biofilm to high levels of oxygen. The B and C fami- important microbial groups on Earth; from a lab-scale bioreactor (LSPB_72; SRA073481), lies are less common and have independently however, much remains to be learned about and subsurface groundwater [RAAC_196 (4)] evolved to function under low oxygen levels their diversity and evolution. Environ- (Fig. 1 and table S1). We also assembled and binned (17). The bd oxidases appear to be widely dis- T Melainabacteria mental 16S ribosomal RNA gene surveys 28 genomes from human gut, tributed by lateral gene transfer and are also suggest that there are at least three extant classes wastewater treatment, subsurface groundwater, adapted to low oxygen levels (18). of Cyanobacteria: Oxyphotobacteria, Melaina- and lake water metagenomes (table S1). These Whereas only the Oxyphotobacteria can per- http://science.sciencemag.org/ bacteria, and the basal branching ML635J-21 genomes greatly expand the coverage of the form photosynthesis, there are members from all clade (1, 2). There are no published genomes Melainabacteria (Fig. 1) and include the first three cyanobacterial classes that are capable of available for class ML635J-21, and nothing genomes for the orders SHAS531 and V201-46 aerobic respiration (Fig. 1 and Table 1). All Oxy- is known about their metabolism. To address (1). Additionally, we discovered 10 previously photobacteria share a common ETC consisting of this shortcoming, we analyzed publicly avail- misclassified genomes in public databases (5) acytochromeb6fcomplex,photosystemI(PSI), able metagenome data sets for the presence that belong to the order Gastranaerophilales photosystem II (PSII), and an A-family oxygen of previously uncharacterized members of the (1)intheMelainabacteria (table S1 and fig. S1). reductase. In addition, some Oxyphotobacteria Melainabacteria and ML635J-21. We assembled These new genomes provide the opportunity genomes encode bd oxidases and C-family oxygen Downloaded from andbinnedthreedraftgenomesbelonging to address fundamental issues concerning the reductases (19). Phylogenetic analyses of complex to class ML635J-21, for which we propose the evolution of oxygenic photosynthesis and aer- III and complex IV proteins show that the cyto- name Sericytochromatia {Se.ri.cy.to.chro.ma’tia: obic respiration. None of the Sericytochromatia chrome b6f complex and A-family oxygen reductase Latin adv. sero, late or too late; New Latin n. or Melainabacteria genomes contain genes for were present in the ancestor of Oxyphotobacteria, cytochrome [from Greek n. kutos, a vessel or phototrophy or carbon fixation (Fig. 1). This strongly whereas the bd oxidases and C-family oxygen reduc- container (and in biology a cell); and Greek suggests that the last common ancestor of Cya- taseswerelikelyacquiredlater(Fig.1andTable1). n. khroma, color]; suff. -ia, to denote a class; nobacteria was nonphototrophic and that the The Melainabacteria exhibit more diversity in New Latin neuter pl. n. Sericytochromatia,in- Oxyphotobacteria gained the ability for pho- their ETCs. Four orders (Vampirovibrionales, tended to mean cytochromes that were acquired tosynthesis through lateral gene transfer after Obscuribacterales, SHAS531,andV201-46)contain late or later in evolution}. Sericytochromatia ge- their divergence from the Melainabacteria.This members capable of aerobic respiration. All aer- nomes were recovered from both photic and is consistent with fusion models for the evolution obic Melainabacteria have a unique fused com- aphotic environments: a coal bed methane well of photosynthesis in Cyanobacteria (6, 7)butnot plex III–IV operon consisting of a C-family oxygen with selective loss (8) or cyanobacterial origin reductaseandtwocytochromebc–related proteins (9, 10) models. (Fig. 1 and Tables 1 and 2). This operon appears 1 Melainabacteria Australian Centre for Ecogenomics, School of Chemistry and The inference of a nonphotosynthetic cyano- to have been acquired early in Molecular Biosciences, University of Queensland, St Lucia, bacterial ancestor can be further tested by ana- evolution because its phylogeny is congruent Queensland, Australia. 2Division of Geological and Planetary lyzing the evolutionary history of high-potential with genome trees. Members of the class lacking Sciences, California Institute of Technology, Pasadena, CA, USA. Gastranaerophilales † metabolism (photosynthesis and aerobic respira- the operon (orders and *These authors contributed equally to this work. Corresponding Caenarcaniphilales author. Email: [email protected] (P.H.); wfischer@caltech. tion). If photosynthesis and/or aerobic respiration ) likely lost the ability for edu (W.W.F.) were present in the ancestor of Cyanobacteria, aerobic respiration as they adapted to anoxic Soo et al., Science 355,1436–1440 (2017) 31 March 2017 1of4 RESEARCH | REPORT environments (Fig. 1). Additional aerobic respiratory reductases (Fig. 1 and Table 2). CBMW_12 con- aerobic respiratory genes may be common in components were acquired later within specific tainsthreecomplexIIIsandthreecomplexIVs. the Sericytochromatia. Melainabacteria groups. A second fused com- It has a complex III–IV operon with a cytochrome Comparison of high-potential metabolism within plex III–IV operon consisting of a cytochrome bc bc complex and a highly modified A-family the Cyanobacteria shows that the three classes complex and a bd-like oxidase with a cytochrome oxygen reductase that is missing its proton utilize very different sets of proteins to perform c fused to the periplasmic side is found in the channels, suggesting that it is unable to pump aerobic respiration (Fig. 1 and Table 2). Phylo- Obscuribacterales (18). Vampirovibrio chlorellavorus protons (fig. S3). Similarly modified A-family genetic analysis of these proteins further indi- (order Vampirovibrionales) and SSGW_16 (order oxygen reductases have been found in many cates that homologs of cytochrome bc complexes, V201-46) both appear to have independently ac- other microorganisms (16). CBMW_12 also con- A- and C-family oxygen reductases, and bd oxi- quired bd oxidases later in evolution (Fig. 1 and Tables tains a second cytochrome bc complex, ACIII, dases are neither closely related between the 1and2).SomemembersoftheObscuribacterales and and A- and C-family oxygen reductases. LSPB_72 classes nor phylogenetically congruent with cya- Caenarcaniphilales also contain a cytochrome bc– has an ACIII as its sole complex III and A- and nobacterial evolution (figs. S2 and S4 to S7). The related protein in an operon with nitrate reductase C-family oxygen reductases (Fig. 1 and Table 2). most parsimonious inference from these data is (fig.S2).ThepresenceofonlyC-familyoxygen The third Sericytochromatia genome (RAAC_196) that the last common ancestor of the Cyanobac-
Recommended publications
  • Phylogenetic Rooting Using Minimal Ancestor Deviation
    Phylogenetic rooting using minimal ancestor deviation Fernando D. K. Tria1, Giddy Landan1*, Tal Dagan Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany 1 Equally contributed. * Corresponding author: [email protected] This preprint PDF is the revised manuscript as submitted to Nature Ecology & Evolution on 30-Mar-2017. It includes both the main text and the supplementary information. The final version published in Nature Ecology & Evolution on 19-Jun-2017 (and submitted on 08-May-2017), is here: https://www.nature.com/articles/s41559-017-0193 Readers without subscription to NatE&E can see a read-only (no save or print) version here: http://rdcu.be/tywU The main difference between the versions is that the ‘Detailed Algorithm’ section is part of the main text 'Methods' section in the NatE&E final version, but is part of the supplementary information of this preprint version. Be sure to page beyond the references to see it. 1 Abstract Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relatio ns are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. We present a novel rooting approach, the minimal ancestor deviation (MAD) method, which embraces heterotachy by utilizing all pairwise topological and metric information in unrooted trees. We demonstrate the method in comparison to existing rooting methods by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the kno wn root of eukaryotes and uncovers evidence for cyanobacteria origins in the ocean. MAD is more robust and co nsistent than existing methods, provides measures of the root inference quality, and is applicable to any tree with branch lengths.
    [Show full text]
  • Contrasting Environmental Preferences of Photosynthetic and Non-Photosynthetic Soil Cyanobacteria Across the Globe
    Received: 31 October 2019 | Revised: 8 July 2020 | Accepted: 20 July 2020 DOI: 10.1111/geb.13173 RESEARCH PAPER Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe Concha Cano-Díaz1 | Fernando T. Maestre2,3 | David J. Eldridge4 | Brajesh K. Singh5,6 | Richard D. Bardgett7 | Noah Fierer8,9 | Manuel Delgado-Baquerizo10 1Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain 2Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain 3Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain 4Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 5Global Centre for Land-Based Innovation, University of Western Sydney, Penrith, New South Wales, Australia 6Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia 7Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK 8Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA 9Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA 10Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain Correspondence Concha Cano-Díaz, Departamento de Abstract Biología, Geología, Física y Química Aim: Cyanobacteria have shaped the history of life on Earth and continue to play Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad important roles as carbon and nitrogen fixers in terrestrial ecosystems.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley,
    [Show full text]
  • Supplemental Materials Adaptations of Atribacteria to Life In
    1 Supplemental Materials 2 Adaptations of Atribacteria to life in methane hydrates: hot traits for cold life 3 Authors: Jennifer B. Glass1*, Piyush Ranjan2*, Cecilia B. Kretz1#, Brook L. Nunn3, Abigail M. Johnson1, James McManus4, Frank J. Stewart2 4 Affiliations: 5 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA 6 2School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA 7 3Department of Genome Sciences, University of Washington, Seattle, WA 8 4Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA 9 10 #Now at: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 11 Atlanta, Georgia, USA 12 *Correspondence to: [email protected] 13 Dedication: To Katrina Edwards 14 1 15 Table S1. Additional geochemical data for ODP Site 1244 at Hydrate Ridge drilled on IODP Leg 204. 16 See Fig. 1 for methane, sulfate, manganese, iron, and iodide concentrations. 17 Depth reactive reactive Hole (mbsf) %TC %TN %TS %TIC %TOC C:N %CaCO3 Fe (%) Mn (%) C1H2 1.95/2.25 2.07 0.2 0.42 0.17 1.9 11.05 1.46 0.38 0.002 C1H3 3.45/3.75 1.88 0.14 0.55 0.70 1.2 9.85 5.81 0.45 0.004 F2H4 8.6 1.54 0.17 0.39 0.44 1.1 7.55 3.66 0.57 0.005 F3H4 18.1 1.55 0.24 0.64 0.08 1.5 7.14 0.68 0.80 0.004 C3H4 20.69 1.22 0.18 0.22 0.08 1.1 7.40 0.65 1.10 0.004 E10H5 68.55 1.71 0.22 0.42 0.13 1.6 8.38 1.08 0.51 0.003 E19H5 138.89 1.42 0.20 0.07 0.51 0.9 5.32 4.23 1.41 0.012 18 2 19 Table S2.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Analysis of Microbial Contamination of Household Water Purifiers
    Applied Microbiology and Biotechnology (2020) 104:4533–4545 https://doi.org/10.1007/s00253-020-10510-5 ENVIRONMENTAL BIOTECHNOLOGY Analysis of microbial contamination of household water purifiers Wenfang Lin1 & Chengsong Ye2 & Lizheng Guo 1,3 & Dong Hu1,3 & Xin Yu2 Received: 23 October 2019 /Revised: 13 February 2020 /Accepted: 28 February 2020 / Published online: 19 March 2020 # Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Household water purifiers are increasingly used to treat drinking water at the household level, but their influence on the microbiological safety of drinking water has rarely been assessed. In this study, representative purifiers, based on different filtering processes, were analyzed for their impact on effluent water quality. The results showed that purifiers reduced chemical qualities such as turbidity and free chlorine. However, a high level of bacteria (102–106 CFU/g)wasdetectedateachstageof filtration using a traditional culture-dependent method, whereas quantitative PCR with propidium monoazide (PMA) treatment showed 106–108 copies/L of total viable bacteria in effluent water, indicating elevated microbial contaminants after purifiers. In addition, high-throughput sequencing revealed a diverse microbial community in effluents and membranes. Proteobacteria (22.06–97.42%) was the dominant phylum found in all samples, except for purifier B, in which Melainabacteria was most abundant (65.79%). For waterborne pathogens, Escherichia coli (100–106 copies/g) and Pseudomonas aeruginosa (100–105 copies/g) were frequently detected by qPCR. Sequencing also demonstrated the presence of E. coli (0–6.26%), Mycobacterium mucogenicum (0.01–3.46%), and P. aeruginosa (0–0.16%) in purifiers. These finding suggest that water from commonly used household purifiers still impose microbial risks to human health.
    [Show full text]
  • Hydrogen-Based Metabolism – an Ancestral Trait in Lineages Sibling to the Cyanobacteria 2 3 Paula B
    bioRxiv preprint doi: https://doi.org/10.1101/328856; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Hydrogen-based metabolism – an ancestral trait in lineages sibling to the Cyanobacteria 2 3 Paula B. Matheus Carnevali^1, Frederik Schulz^2, Cindy J. Castelle1, Rose Kantor1,13, Patrick 4 Shih3,4,14, Itai Sharon1,15,16, Joanne M. Santini5, Matthew Olm6, Yuki Amano7,8, Brian C. 5 Thomas1, Karthik Anantharaman1,17, David Burstein1,18, Eric D. Becraft9, Ramunas 6 Stepanauskas9, Tanja Woyke2 and Jillian F. Banfield*1,6,10,11,12 7 8 9 ^Contributed equally 10 *Corresponding Author ([email protected]) 11 12 13 14 1Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 15 2DOE Joint Genome Institute, Walnut Creek, CA, USA. 16 3Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA. 17 4Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 18 USA. 19 5Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, UK. 20 6Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 21 7Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan. 22 8Horonobe Underground Research Center, Japan Atomic Energy Agency, Horonobe, Hokkaido, Japan. 23 9Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA. 24 10Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA. 25 11Chan Zuckerberg Biohub, San Francisco, CA, USA. 26 12Innovative Genomics Institute, Berkley, CA, USA.
    [Show full text]
  • Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish
    fmicb-10-02512 October 29, 2019 Time: 16:10 # 1 ORIGINAL RESEARCH published: 31 October 2019 doi: 10.3389/fmicb.2019.02512 Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish M. Carla Piazzon1*, Fernando Naya-Català2, Paula Simó-Mirabet2, Amparo Picard-Sánchez1, Francisco J. Roig3,4, Josep A. Calduch-Giner2, Ariadna Sitjà-Bobadilla1 and Jaume Pérez-Sánchez2* 1 Fish Pathology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain, 2 Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain, 3 Biotechvana S.L., Valencia, Spain, 4 Instituto de Medicina Genomica, S.L., Valencia, Spain Intestinal microbiota is key for many host functions, such as digestion, nutrient metabolism, disease resistance, and immune function. With the growth of the Edited by: aquaculture industry, there has been a growing interest in the manipulation of fish Malka Halpern, gut microbiota to improve welfare and nutrition. Intestinal microbiota varies with many University of Haifa, Israel factors, including host species, genetics, developmental stage, diet, environment, and Reviewed by: Zhigang Zhou, sex. The aim of this study was to compare the intestinal microbiota of adult gilthead sea Feed Research Institute (CAAS), bream (Sparus aurata) from three groups of age and sex (1-year-old males and 2- and China Luis Caetano Martha Antunes, 4-year-old females) maintained under the same conditions and fed exactly the same National School of Public Health, diet. Microbiota diversity and richness did not differ among groups. However, bacterial Brazil composition did, highlighting the presence of Photobacterium and Vibrio starting at *Correspondence: 2 years of age (females) and a higher presence of Staphylococcus and Corynebacterium M.
    [Show full text]
  • S41598-017-07241-5.Pdf
    www.nature.com/scientificreports OPEN In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR Received: 16 December 2016 Accepted: 26 June 2017 homologs in Gram-positive bacteria Published online: 10 August 2017 Akanksha Rajput & Manoj Kumar LuxI and LuxR are key factors that drive quorum sensing (QS) in bacteria through secretion and perception of the signaling molecules e.g. N-Acyl homoserine lactones (AHLs). The role of these proteins is well established in Gram-negative bacteria for intercellular communication but remain under-explored in Gram-positive bacteria where QS peptides are majorly responsible for cell-to- cell communication. Therefore, in the present study, we explored conservation, potential function, topological arrangements and evolutionarily aspects of these proteins in Gram-positive bacteria. Putative LuxI/LuxR containing proteins were retrieved using the domain-based strategy from InterPro v62.0 meta-database. Conservational analyses via multiple sequence alignment and domain showed that these are well conserved in Gram-positive bacteria and possess relatedness with Gram- negative bacteria. Further, Gene ontology and ligand-based functional annotation explain their active involvement in signal transduction mechanism via QS signaling molecules. Moreover, Phylogenetic analyses (LuxI, LuxR, LuxI + LuxR and 16s rRNA) revealed horizontal gene transfer events with signifcant statistical support among Gram-positive and Gram-negative bacteria. This in-silico study ofers a detailed overview of potential LuxI/LuxR distribution in Gram-positive bacteria (mainly Firmicutes and Actinobacteria) and their functional role in QS. It would further help in understanding the extent of interspecies communications between Gram-positive and Gram-negative bacteria through QS signaling molecules.
    [Show full text]
  • Crown Group Oxyphotobacteria Postdate the Rise Of
    360 Appendix 5 CROWN GROUP OXYPHOTOBACTERIA POSTDATE THE RISE OF OXYGEN Patrick M. Shih, James Hemp, Lewis M. Ward, Nicholas J. Matzke, and Woodward W. Fischer. “Crown group Oxyphotobacteria postdate the rise of oxygen." Geobiology 15.1 (2017): 19-29. DOI: 10.1111/gbi.12200 Abstract: The rise of oxygen ca. 2.3 billion years ago (Ga) is the most distinct environmental transition in Earth history. This event was enabled by the evolution of oxygenic photosynthesis in the ancestors of Cyanobacteria. However, longstanding questions concern the evolutionary timing of this metabolism, with conflicting answers spanning more than one billion years. Recently, knowledge of the Cyanobacteria phylum has expanded with the discovery of non-photosynthetic members, including a closely related sister group termed Melainabacteria, with the known oxygenic phototrophs restricted to a clade recently designated Oxyphotobacteria. By integrating genomic data from the Melainabacteria, cross-calibrated Bayesian relaxed molecular clock analyses show that crown group Oxyphotobacteria evolved ca. 2.0 billion years ago (Ga), well after the rise of atmospheric dioxygen. We further estimate the divergence between Oxyphotobacteria and Melainabacteria ca. 2.5-2.6 Ga, which—if oxygenic photosynthesis is an evolutionary synapomorphy of the Oxyphotobacteria—marks an upper limit for the origin of oxygenic 361 photosynthesis. Together these results are consistent with the hypothesis that oxygenic photosynthesis evolved relatively close in time to the rise of oxygen. Introduction: Oxygenic photosynthesis was responsible for the most profound environmental shift in Earth history: the rise of oxygen. It was long recognized that this metabolism evolved in the Cyanobacteria phylum, and that this unique ability was a necessary precondition for the rise of oxygen at ca.
    [Show full text]
  • Supplementary Tables for Photosynthesis Is Not a Universal
    Supplementary Tables for Photosynthesis is not a Universal Feature of the Phylum Cyanobacteria Rochelle M. Soo, Connor T. Skennerton, Yuji Sekiguchi, Michael Imelfort, Samuel J. Paech, Paul G. Dennis, Jason A. Steen, Donovan H. Parks, Gene W. Tyson, and Philip Hugenholtz† † Correspondence to: Philip Hugenholtz, [email protected] Table S1. Sequencing statistics EBPR1_T1 to EBPR1_T6 and EBPR2_T1 to EBPR2_T3 (blue) correspond to the nine samples collected from two enhanced biological phosphorous removal bioreactor (EBPR), Zag_T1 to Zag_T3 (red) correspond to the three time points where samples were collected from koala feces, MH_F2, F3, F5, F6, F8, M3 and M8 correspond to human feces collected from seven Danish females and males (http://www.metahit.eu/) (purple) and A1, A2, F1 and F2 from the UASB (green). The combined assembly statistics is the amount of sequencing performed for all of the samples collected from EBPR, koala feces, Danish individuals or UASB. Genome population bins is the number of genome bins that was produced by GroopM v.1.0. The N50 is for all of the combined metagenomic data for each sample. Combined shotgun sequencing assembly statistics for GroopM Mate pair sequencing Sample ID Sampling Shotgun sequence (Gbp) Number N50 Genome Mate pair Insert size Date of population sequencing (kbp) contigs bins (Gbp) EBPR1_T1 05/27/11 26.2 (174,720,232 x 150bp) 148,338 1.4 kbp 299 4.88 3.2-3.8 EBPR1_T2 06/22/11 21.49 (143,317,626 x 150bp) EBPR1_T3 08/01/11 23.76 (158,451,996 x 150bp) EBPR1_T4 09/08/11 38.01 (253,461,380 x 150bp)
    [Show full text]