United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented June 13, 1950 2,511,653 UNITED STATES PATENT OFFICE 2,511,653 PREPARATION OF ALPHA-METHOXY PROPONTRLE Edwin William Shand, Pittsburgh, Pa., assignor to Sinclair Refining Company, New York, N.Y., a corporation of Maine. No Drawing. Application October 30, 1948, Serial No. 57,615 2 Claims. (CI. 260-465.6) 2 My invention relates to improvements in the F. desirable and prefer temperatures of about preparation of alpha methoxy nitriles such as 400-500 F. In addition, a more satisfactory alpha methoxypropionitrile, and, more particu conversion is effected when the slurry Of para larly, to a method of preparing alpha methoxy formaldehyde and nitrile is preheated to ten nitries by reacting an aliphatic nitrile and para s peratures in the range of 360°-510 F., depend formaldehyde, or nascent anhydrous formalde ing upon the particular reaction chamber ten hyde, in the presence of a dehydration catalyst perature employed. at elevated temperatures. Further details respecting my invention will When an organic cyanide is reacted with a be apparent from the following examples which compound such as formaldehyde, in the presence are set forth primarily for the purpose of illus of a dehydration-type catalyst, at elevated ten trating useful embodiments of my improved peratures, an unsaturated cyanide is formed. process. The examples illustrate once-through Such a process is disclosed in Brant et al. U. S. operation but obviously higher yields result from Patent No. 2,386,586, wherein formaldehyde as modification for repeated contacting. Formalin and propionitrile are reacted over a 5 Eacample I dehydration agent, such as alumina or silica gel at 350°-750° E. and an 80 to 88% yield of metha 21.5 gms. of paraformaldehyde were added to crylonitrile is recovered. 80.1 gms. of propionitrile to form a slurry in have now discovered, however, that anhy which the paraformaldehyde was kept in sus drous formaldehyde, when reacted with a nitrile 20 pension by a motor-driven stirrer. The solution such as propionitrile in the presence of a dif was preheated to 360°-375 F. and then fed over ficultly reducible oxide of a metal of group II, a period of one hour into a reactor vessel con III or IV of the periodic table, e. g., alumina, taining a catalyst bed of 50 cc. of alumina, So at elevated temperatures yields an alpha meth heated that the temperature of the bottom of Oxynitrile in contrast to expectations based upon 25 the alumina bed varied between 370-460° E. and the general experience of the art. For example, the temperature of the top between 375-390 F. over the reaction period. I have found that when paraformaldehyde is USed At the end of the one hour period the total as an in situ source of formaldehyde and dis feed was 90.5 gms, and 8.5 gms. of Solids and persed in liquid propionitrile and the slurry is 41.5 gms. of liquid, principally alpha methoxy reacted over alumina as catalyst at a temperas 30 ture within the range approximating 350-685 propionitrile, were recovered. The liquid also F., preferably about 400-500 F., alpha, methoxy contained. Some traces of unreacted paraformal propionitrile is produced in good yields. dehyde and propionitrile, but no methacrylonit irie Was found. The anhydrous formaldehyde thus is generated The boiling point of the liquid recovered was in the reactor vessel when the slurry of para 35 formaldehyde and propionitrile is heated in the 86°-123° C., with 80% boiling at 119°-122° C. presence of the alumina catalyst. The nascent The refractive index at 20° C. was 1.3935, and gas then reacts in situ with the propionitrile the density (20/4) was 0.8973. The percentage to form alpha, methoxy propionitrile. nitrogen found was 16.7. I have found, in Unexpected contrast, that if 40 Eacample II the process is conducted by charging the formal This run Was performed in the Same manner dehyde as a gas in the monomeric state, e. g., as Example I, except that all of a dispersion of by preheating the paraformaldehyde to, Say, 45.0 gms. of paraformaldehyde in 96.5 gms. Of 220-575° F., and passing the gas so formed propionitrile, preheated to 490°-510 F., was fed through a heated tube to the reactor vessel, the 43 into the reactor vessel containing an alumina reaction does not go. It appears therefore that catalyst bed of 50 cc. over a period of 134 hours. the formaldehyde must be generated in contact The top temperature of the bed Was varied be with the catalyst and propionitrile. tween 50-695 E., and the bottom between 490° The temperature of the reaction should be 685 F. The tendency of ungasified paraformal sufficient to generate anhydrous formaldehyde 50 dehyde to plug the reaction system was reduced in considerable quantity from the paraformalde at these temperatures. hyde. Thus a minimum temperature of about At the end of 134 hours, 11.0 gms. of the Solids 212 F. to a maximum of about 800° F. is indi and 30.2 gms. Of the alpha methoxy propionitrile cated, although in actual practice I have found liquid were recovered. In addition, 8.0 gms. of elevated temperatures of the order of 350°-685 water Were produced in the conversion, indicat 2,511,658 3 4. ing the occurrence of some dehydration. No IV of the periodic table such as thoria, zirconia, methacrylonitrile was found in the liquid prod beryllia, are useful. I have found, however, that uct, but the solid residue remaining in the re the reaction does not appear to proceed with actor contained a polymeric material soluble in the well known non-metallic dehydration cata alcohol. Accordingly, it appears that under the lyst, silica gel. Variations in the reaction condi conditions of this run a minor amount of de tions and manipulative procedure are permissible hydration and polymerization of the unsaturated as indicated to the art by the nature of the product occurred. I conclude that the more starting nitrile, the catalyst, or the presence of moderate conditions of temperature favor the Solvent. production of alpha methoxy propionitrile al O Alpha, methoxy propionitrile is valuable as a though higher temperatures promote ease of fungicide, insecticide, and the alpha methoxy Imanipulation by maintaining the reactants and nitriles generally have utility as solvents and products in fluid form. intermediates in organic synthesis. My invention The liquid recovered boiled over the range, thus provides a new reaction mechanism under 67°-122° C., with 57% boiling between 119°-122° C. 15 dehydration conditions, and provides for the The material boiling between 118-122° C. for production of alpha methoxy nitriles by an im both runs was composited and the methyl ester proved and unexpected means. was prepared. A comparison of its physical I claim: characteristics with those found in the literature 1. In the preparation of alpha, methoxy pro are tabulated below: 20 pionitrile the improvement which consists of re acting a slurry of paraformaldehyde and pro Refractive pionitrile in the presence of alumina at a Methyl Ester PE". Inde,at 20 temperature in the range approximating 350° to 685° E. Found--------------------------- 129.2-129,8 1397 25 2. The process which comprises reacting nascent Literature Data--------------------- 29.5-129.8 3968 anhydrous formaldehyde with propionitrile in the presence of alumina at a temperature in the The reaction illustrated in the examples is ap range approximating 350 to 685 F., and recover plicable to other aliphatic nitriles including ing alpha, methoxy propionitrile from the re alicyclic nitriles and polynitriles Such as Succino 30 action products. nitrile. For example, approximately equimolar EDWIN WILLIAM SHAND. proportions of say acetonitrile, butyronitrile or cyclohexane carbonitrile and paraformaldehyde REFERENCES CTE) are reacted to produce the corresponding alpha The following references are of record in the methoxy derivatives. In the case of solid nitriles, file of this patent: an appropriate inert solvent, e. g. hexane, is ad vantageously employed in the preparation of the UNITED STATES PATENTS reaction mixture. Further, for the alumina, Number Nane Date catalyst of the examples, other difficultly re 2,285,948 Rust --------------- June 9, 1942 ducible oxides of metals of groups II, III, and k 2,386,586 Brant et al. --------- Oct. 9, 1945 .
Recommended publications
  • House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, Or Isothiocyanate Radicals
    House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals Agriculture Handbook No. 403 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Contents Page Methods 1 Results and discussion 3 Thiocyanic acid esters 8 Straight-chain nitriles 10 Propionitrile derivatives 10 Conclusions 24 Summary 25 Literature cited 26 This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. ¿/áepé4áaUÁí^a¡eé —' ■ -"" TMK LABIL Mention of a proprietary product in this publication does not constitute a guarantee or warranty by the U.S. Department of Agriculture over other products not mentioned. Washington, D.C. Issued July 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents House Fly Attractants and Arrestants: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals BY M. S. MAYER, Entomology Research Division, Agricultural Research Service ^ Few chemicals possessing cyanide (-CN), thio- cyanate was slightly attractive to Musca domes- eyanate (-SCN), or isothiocyanate (~NCS) radi- tica, but it was considered to be one of the better cals have been tested as attractants for the house repellents for Phormia regina (Meigen).
    [Show full text]
  • United States Patent Office 2,969,402 Patented Jan
    United States Patent Office 2,969,402 Patented Jan. 24, 1961 2 preferred. In a more preferred aspect the upper tem 2,969,402 perature is about 10 C. The ratio of the three components, i.e., alkaline earth PREPARATION OF CATALYSTS FOR THE POLY metal hexammoniate, olefin oxide, and organic nitrile, MERIZATION OF EPOXDES can be varied over a wide range in the preparation of the Fred N. Hill, South Charleston, and John T. Fitzpatrick novel catalysts. The reaction is conducted, as indicated and Frederick E. Bailey, Jr., Charleston, W. Va., as previously, in an excess liquid ammonia medium. Thus, signors to Union Carbide Corporation, a corporation active catalysts can be prepared by employing from about of New York 0.3 to 1.0 mol of olefin oxide per mol of metal hexam No Drawing. Filed Dec. 29, 1958, Ser. No. 783,100 0. moniate, and from about 0.2 to 0.8 mol of organic nitrile per mol of metal hexammoniate. Extremely active 12 Claims. (CI. 260-632) catalyst can be prepared by employing from about 0.4 to 1.0 mol of olefin oxide per mol of metal hexammoniate, This invention relates to the preparation of composi and from about 0.3 to 0.6 mol of organic nitrile per mol tions which are catalytically active for the polymerization 5 of metal hexammoniate. It should be noted that the of epoxide compounds which contain a cyclic group com alkaline earth metal hexammoniate, M(NH3)6 wherein posed of two carbon atoms and one oygen atom. M can be calcium, barium, or strontium, contains alkaline Various divalent metal amides, H2N-M-NH2, and earth metal in the zero valence state.
    [Show full text]
  • State of Illinois Environmental Protection Agency Application for Environmental Laboratory Accreditation
    State of Illinois Environmental Protection Agency Application for Environmental Laboratory Accreditation Attachment 6 Program: RCRA Field of Testing: Solid and Chemical Materials, Organic Matrix: Non Solid and Potable Chemical Accredited Water Materials Analyte: Status* Method (SW846): 1,2-Dibromo-3-chloropropane (DBCP) 8011 1,2-Dibromoethane (EDB) 8011 1,4-Dioxane 8015B 1-Butanol (n-Butyl alcohol) 8015B 1-Propanol 8015B 2-Butanone (Methyl ethyl ketone, MEK) 8015B 2-Chloroacrylonitrile 8015B 2-Methyl-1-propanol (Isobutyl alcohol) 8015B 2-Methylpyridine (2-Picoline) 8015B 2-Pentanone 8015B 2-Propanol (Isopropyl alcohol) 8015B 4-Methyl-2-pentanone (Methyl isobutyl ketone, 8015B MIBK) Acetone 8015B Acetonitrile 8015B Acrolein (Propenal) 8015B Acrylonitrile 8015B Allyl alcohol 8015B Crotonaldehyde 8015B Diesel range organics (DRO) 8015B Diethyl ether 8015B Ethanol 8015B Ethyl acetate 8015B Ethylene glycol 8015B Ethylene oxide 8015B Gasoline range organics (GRO) 8015B Hexafluoro-2-methyl-2-propanol 8015B * PI: Pending Initial Accreditation A: Accredited SP: Suspended WD: Accreditation Withdrawn Attachment 6: Page 1 of 62 Program: RCRA Field of Testing: Solid and Chemical Materials, Organic Matrix: Non Solid and Potable Chemical Accredited Water Materials Analyte: Status* Method (SW846): Hexafluoro-2-propanol 8015B Isopropyl benzene ((1-methylethyl) benzene) 8015B Methanol 8015B N-Nitrosodi-n-butylamine (N-Nitrosodibutylamine) 8015B o-Toluidine 8015B Paraldehyde 8015B Propionitrile (Ethyl cyanide) 8015B Pyridine 8015B t-Butyl alcohol 8015B
    [Show full text]
  • CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011
    CSAT Top-Screen Questions January 2009 Version 2.8 CSAT Top-Screen Questions OMB PRA # 1670-0007 Expires: 5/31/2011 Change Log .........................................................................................................3 CVI Authorizing Statements...............................................................................4 General ................................................................................................................6 Facility Description.................................................................................................................... 7 Facility Regulatory Mandates ................................................................................................... 7 EPA RMP Facility Identifier....................................................................................................... 9 Refinery Capacity....................................................................................................................... 9 Refinery Market Share ............................................................................................................. 10 Airport Fuels Supplier ............................................................................................................. 11 Military Installation Supplier................................................................................................... 11 Liquefied Natural Gas (LNG) Capacity................................................................................... 12 Liquefied Natural Gas Exclusion
    [Show full text]
  • United States Patent [191 1111 3,937,703 Meredith [45] Feb
    United States Patent [191 1111 3,937,703 Meredith [45] Feb. 10, 1976 [54] PREPARATION OF RDX _ 2,568,620 9/1951 Gresham et al ................... .. 260/248 [75] Inventor: Joseph A. Meredi‘h, Bluff City’ 3.1781430 4/1965 Thatcher ........................... .. 260/248 Tenn. _ . Primary Examiner—.lohn M. Ford [73] AsS'gnee: The Um‘ed States of Amenca as Attorney, Agent, or Firm——Nathan Edelberg; Robert P. represented by the Secretary of the Gibson. A_ victor Er-kkila Army, Washington, DC. ’ [ 22 1 F1'i ed : Nov . 8, 1974 [57] ABSTRACT [2i] App]. No.: 522,153 _ . RDX is produced by reacting formaldehyde and an alkyl nitriie RCN,» wherein R is an alkyl group of l to U.S. - ~ - ~ . - . -. 3 carbon atoms, in the absence of added Solvents’ to [51] Int. Cl. ...................................... .. C07D 251/54 form a 1,3,5_triacylhexahydro_s_triazine and Subject_ Eleld of Search ............................. .. the latter, without Separation thereof from the re _ action mixture, to nitrolysis by contact with concen [56] References C'ted trated nitric acid to form RDX. UNITED STATES PATENTS _ _ . 2,559,835 7/1951 Zerner et al. ........ ........... .. 260/248 5 Clams’ N0 Drawmgs 3,937,703 1 a white solid; and when the addition was complete, the PREPARATION OF RDX slurry was quite heavy with solids, and if allowed to cool, the slurry became a very viscous semisolid. After BACKGROUND OF THE INVENTION the addition of the propionitrile-trioxane solution was RDX (1,3,5-trinitrohexahydro-s-triazine) is usually 5 complete, the slurry was added slowly portionwise to manufactured industrially by nitrolysis of hexamethy - about 10 volumes of 99% nitric acid, which was agi lenetetramine with concentrated nitric acid.
    [Show full text]
  • United States Patent (19) 11) 4,370,278 Stahly Et Al
    United States Patent (19) 11) 4,370,278 Stahly et al. 45) Jan. 25, 1983 54) NUCLEOPHILIC SUBSTITUTION PROCESS Sunwell et al., J. of Medicinal Chem., vol. 18, 692-694, 75) Inventors: Barbara C. Stahly; G. P. Stahly, both (1975). of Baton Rouge, La. Primary Examiner-Dolph H. Torrence 73 Assignee: Ethyl Corporation, Richmond, Va. Attorney, Agent, or Firm-Donald L. Johnson; John F. (21) Appl. No.: 317,321 Sieberth 57 ABSTRACT 22 Filed: Nov. 2, 1981 2-(Fluoronitrobenzene)alkyl cyanides are prepared by 51) Int. Cl. .................. C07C 121/78; CO7C 121/66; reacting a fluoronitrobenzene with an alpha-substituted CO7C 53/132 alkyl cyanide in a substantially anhydrous aprotic sol 52 U.S. Cl. ........................... 260/465 E; 260/465 G; vent. and in the presence of a base so that the alkyl 562/492 cyanide reactant undergoes a nucleophilic substitution 58) Field of Search ....................... 260/46.5 G, 465 E; reaction on an unsubstituted carbon atom of the 562/492 fluoronitrobenzene during which the alpha-substituent 56) References Cited of the alkyl cyanide reactant functions as a leaving group. Use of 2-fluoronitrobenzene and an alpha-sub U.S. PATENT DOCUMENTS stituted propionitrile (e.g., 2-chloropropionitrile) pro 3,755,427 8/1973 Adams et al. ....................... 562/492 duces a novel compound, 2-(3-fluoro-4-nitrobenzene)- 3,920,839 11/1975 Wasley ............. ... 424/319 propionitrile. Reduction of the nitro substituent pro 3,959,364 5/1976 Armitage et al. ... 562/492 duces another novel compound, 2-(4-amino-3- 4,278,516 7/1981 Zaiko et al. ......... ... 204/158 HA fluorobenzene)proprionitrile.
    [Show full text]
  • Polymers Functionalized with Nitrile Compounds
    (19) TZZ ¥ Z_T (11) EP 2 382 240 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08C 19/44 (2006.01) B60C 1/00 (2006.01) 16.04.2014 Bulletin 2014/16 C08K 3/00 (2006.01) C08L 15/00 (2006.01) (21) Application number: 10733884.0 (86) International application number: PCT/US2010/021767 (22) Date of filing: 22.01.2010 (87) International publication number: WO 2010/085622 (29.07.2010 Gazette 2010/30) (54) POLYMERS FUNCTIONALIZED WITH NITRILE COMPOUNDS CONTAINING A PROTECTED AMINO GROUP DURCH NITRILVERBINDUNGEN MIT EINER GESCHÜTZTEN AMINOGRUPPE FUNKTIONALISIERTE POLYMERE POLYMÈRES FONCTIONNALISÉS AVEC DES COMPOSÉS DE NITRILE CONTENANT UN GROUPE AMINO PROTÉGÉ (84) Designated Contracting States: • SUZUKI, Eiju AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tokyo 104-8340 (JP) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • BRUMBAUGH, Dennis, R. PT RO SE SI SK SM TR North Canton, OH 44721 (US) (30) Priority: 23.01.2009 US 146871 P (74) Representative: Waldren, Robin Michael et al Marks & Clerk LLP (43) Date of publication of application: 90 Long Acre 02.11.2011 Bulletin 2011/44 London WC2E 9RA (GB) (73) Proprietor: Bridgestone Corporation Tokyo 104-8340 (JP) (56) References cited: WO-A1-2006/128158 WO-A2-2008/156788 (72) Inventors: KR-A- 20070 092 699 US-A- 4 927 887 • LUO, Steven US-A- 5 310 798 US-A1- 2002 137 849 Copley, OH 44321 (US) US-A1- 2003 176 276 US-B2- 6 897 270 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • United States Patent Office Patented Dec
    2,726,945 United States Patent Office Patented Dec. 13, 1955 2 The present invention is further illustrated, but not limited, by the following examples: 2,726,945 Example 1 B-(2-CHLOROANILINO)PROPIONITRILE A mixture consisting of 254 g. (2.0 moles) of 2-chloro aniline, 265 g. (5.0 moles) of acrylonitrile, 18 ml. of Samuel Allen Heininger, Dayton, Ohio, assignor to Mon glacial acetic acid, 1 g of cuprous chloride and 4 g. of santo Chemical Company, St. Louis, Mo., a corporation hydroquinone was heated for 12 hours at 150° C. in a of Delaware stainless steel, rocking autoclave. Fractionation of the No Drawing. Application April 19, 1954, O resulting reaction mixture gave 81.9 g of the substan Seria No. 424,256 tially pure B-(2-chloroanilino)propionitrile B. P. 123 5 Claims. (C. 71-2.3) C./0.5 mm., n25 1.5725. Example 2 The present invention relates to organic nitrogen com 5 A mixture of 254 g. (2.0 moles) of 2-chloroaniline and pounds and more particularly provides the hitherto un 53 g. ( 1.0 mole) of acrylonitrile was heated to reflux and known B-(2-chloroanilino)propionitrile, a method of pro then 5 ml. of glacial acetic acid was added. The whole ducing the same and pre-emergent herbicidal composi was refluxed for 1 hour. One ml. of acetic acid was tions containing said nitrile. added and refluxing (112-113 C.) was continued for a According to the invention b-(2-chloroanilino) pro 20 total of 88 hours, during which period glacial acetic pionitrile is prepared by contacting 2-chloroaniline with acid was added in 5 ml.
    [Show full text]
  • Intramolecular Light Induced Activation of a Salen-Mniii Complex by a Ruthenium Photosensitizer
    Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 Supporting information for Intramolecular Light Induced Activation of a Salen-MnIII Complex by a Ruthenium Photosensitizer Christian Herrero,*a Joseph L. Hughes,a Annamaria Quaranta,a Nicholas Cox,b A. William Rutherford,a Winfried Leibl,a Ally Aukaulooac aCEA, iBiTec-S, Service de Bioénergétique Biologie Structurale et Mécanismes (SB2SM), F-91191 Gif-sur-Yvette, France, CNRS, URA 2096, F-91191 Gif-sur-Yvette, France b Max Planck Institute für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470, Mülheim an der Ruhr, Germany cInstitut de Chimie Moléculaire et des Matériaux d’Orsay, UMR-CNRS 8182, Université de Paris-Sud XI, F-91405 Orsay, France E-mail : [email protected] Index Page Figures S1. Transient absorption in the absence of electron acceptor 2 S2. Transient absorption in the presence of electron acceptor 2 S3. X-band EPR spectra of light induced oxidation of RuII-Salen. 3 S4. EPR and absorption spectra of chemically oxidized RuII-Salen-MnIII. 3 Synthesis and structural characterization 4 Laser Flash Photolysis 8 EPR spectroscopy and Sample Illuminations 8 Steady state absorption 8 Chemical oxidations 9 Electrochemistry 9 References 9 Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 Figure S1. Transient absorption in the absence of electron acceptor RuII-polypyridyl 1MLCT transient absorption kinetics at 20°C of absorption matched (A~0.2 at 460 nm) RuII-Salen-MnIII (7) (black traces) and RuII-Salen (6) (grey traces) dissolved in acetonitrile following a ~10 mJ ~7 ns flash at 460 nm.
    [Show full text]
  • PROPIONITRILE ALSO KNOWN AS I Propionitrile I Ethyl Cyanide I Propanenitrile
    Prionil® PROPIONITRILE ALSO KNOWN AS I Propionitrile I Ethyl cyanide I Propanenitrile KEY CHARACTERISTICS I Cost-effective intermediate I Higher boiling point relative to acetonitrile I High solvency - miscible in acetone, alcohol and ether I Water soluble Flopropione Trifluralin Crystallization solvent Propionate salts pharmaceutical herbicide purification aid mold inhibitor Prionil® PROPIONITRILE Prionil is a specialty nitrile, also known as propionitrile, used as a building block for many key intermediates in agricultural, industrial, personal care and other applications. INTERMEDIATES I As a herbicide and pharmaceutical intermediate, Prionil is a precursor to propylamines (nPA, DnPA, TnPA), C-3 building H3C blocks used in the preparation of: N • Trifluralin (herbicide) • Flopropione (pharmaceutical) CHARACTERISTICS I Oxazoline intermediate Assay, wt.% 98 minimum As an oxazoline intermediate, Prionil can be used as an Color, APHA 40 maximum epoxy curing agent, in pharmaceuticals (Tagamet), in adhesives, herbicides and specialty acrylics Water, wt.% 0.5 maximum Other nitriles, wt.% 3.5 maximum O CN + HO NH2 N PROPERTIES Prionil MEA 2-ethyl-2-oxazoline Chemical formula C3H5N Molar mass 55.08 g·mol−1 I Appearance Colorless liquid Propionate salts (Na/Ca/NH4) • Mold inhibitor for bread: calcium salt Odor Sweetish pleasant • Meat preservative: sodium salt −1 Density 772 mg mL • Mold inhibitor for animal feed: ammonium salt Melting point −100 to −86°C I Propionate esters Boiling point 96 to 98°C I Propionic acid Solubility in water 11.9% (20°C) Vapor pressure 270 μmol Pa−1 kg−1 SOLVENTS Refractive index (nD) 1.366 Flash point Flash point 6°C (43°F) I Crystallization solvent Used in the production of fragrances, flavorings, amines and pharmaceuticals such as ketoprofen I Acetonitrile replacement I Electronic cleaners About Ascend Ascend Performance Materials is a global leader in the production of high-quality plastics, chemicals, and fibers.
    [Show full text]
  • 2,3-Bis (4-Hydroxyphenyl) Propionitrile SAFETY DATA SHEET
    SAFETY DATA SHEET Page: 1 of 5 2,3-bis (4-Hydroxyphenyl) Propionitrile Revision: 08/06/2019 Supersedes Revision: 01/27/2015 according to Regulation (EC) No. 1907/2006 as amended by (EC) No. 2015/830 and US OSHA HCS 2015 Section 1. Identification of the Substance/Mixture and of the Company/Undertaking 1.1 Product Code: 10008842 Product Name: 2,3-bis (4-Hydroxyphenyl) Propionitrile Synonyms: 4-hydroxy-.alpha.-(4-hydroxyphenyl)-benzenepropanenitrile; DPN; 1.2 Relevant identified uses of the substance or mixture and uses advised against: Relevant identified uses: For research use only, not for human or veterinary use. 1.3 Details of the Supplier of the Safety Data Sheet: Company Name: Cayman Chemical Company 1180 E. Ellsworth Rd. Ann Arbor, MI 48108 Web site address: www.caymanchem.com Information: Cayman Chemical Company +1 (734)971-3335 1.4 Emergency telephone number: Emergency Contact: CHEMTREC Within USA and Canada: +1 (800)424-9300 CHEMTREC Outside USA and Canada: +1 (703)527-3887 Section 2. Hazards Identification 2.1 Classification of the Substance or Mixture: Serious Eye Damage/Eye Irritation, Category 2 Aquatic Toxicity (Acute), Category 1 2.2 Label Elements: GHS Signal Word: Warning GHS Hazard Phrases: H319: Causes serious eye irritation. H400: Very toxic to aquatic life. GHS Precaution Phrases: P264: Wash {hands} thoroughly after handling. P273: Avoid release to the environment. P280: Wear {protective gloves/protective clothing/eye protection/face protection}. GHS Response Phrases: P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Chemical Compatibility Guide
    20887Cvr:Layout 1 5/13/08 7:39 AM Page 2 Chemical Compatibility Guide Aro is pleased to present this selection guide to provide a convenient and informative reference point for pump selection. This information was compiled from information provided by material suppliers and manufacturers. The compatibility listings are intended as a guide only. We assume no liability for their accuracy on their use. The user should test under their own operating conditions to determine the suitability of any compound and material in a particular application. 20887Txt:43077 5/12/08 8:36 AM Page 1 20887Txt:43077 5/12/08 8:36 AM Page 1 THERMOPLASTIC ELASTOMERS (TPE’s) verses THERMOSETTING RUBBER DIAPHRAGMS Aro’s direction has been to move toward replacement of traditional thermoset rubber diaphragms with thermoplastic elastomers (TPE). Examples of TPE’s include: Santoprene, Nitrile (TPE) and Hytrel. TPE’s are manufactured using a plastic injection molding process where the resin, or diaphragm material, is melted and injected into a mold to produce the diaphragm. The advantages of this process includes: Features Benefits Diaphragm is molded to optimum shape Excellent flex life Homogenous part No delamination failures High performance resins Chemical, abrasion and flex life Injection molded/tight process control Low cost/consistent performance Laboratory testing has shown: Injection Mold Process Santoprene outperformed all rubber diaphragms except Buna in the mild abrasive fluids. Molded Diaphragm The Geolast diaphragm had equivalent life to the Buna diaphragms and was superior to the other rubbers compounds. 1 Teflon with the Santoprene backer exhibited the best flex life of all diaphragms during the test series.
    [Show full text]