8. Interactions Between Major Biogeochemical Cycles in Marine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest
Acta Silv. Lign. Hung., Vol. 7 (2011) 87–96 The Effects of Detritus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest a* b c István FEKETE – Zsolt KOTROCZÓ – Csaba VARGA – b b Zsuzsa VERES – János Attila TÓTH a Institute of Environmental Science, College of Nyíregyháza, Nyíregyháza, Hungary b Department of Ecology, University of Debrecen, Debrecen, Hungary c Department of Land and Environmental Management, College of Nyíregyháza, Nyíregyháza, Hungary Abstract – A major objective of our research was to survey soil biological activity and organic matter content reduction in a Central European oak forest during treatments of various detritus inputs within the Síkf őkút DIRT ( Detritus Input and Removal Treatments ) Project. Beside the control, three detritus removal and two detritus duplication treatments were applied. Our examinations have proven that soil organic matter content declined relatively fast in detritus removal treatments. The reduction was especially remarkable in root detritus removal treatments, where – due to the lack of transpiration – soils were moister during the whole year than in the other treatments. The higher moisture content, despite of the reduction of detritus input, produced an intense soil respiration. This can be explained by the fact that decomposing organisms have increased the use of soil organic matter. Detritus input reduction had a significantly greater effect on soil respiration and organic matter content than detritus input duplication of the same extent. The latter did not cause any significant change compared to the control. litter manipulation / soil respiration / DIRT Project / humus content / climate change Kivonat – Az avarinput hatása a talaj szerves anyag tartalmára és szén-dioxid kibocsátására egy Közép-európai lombhullató erd őben. -
Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background -
Sediment Activity Answer Key
Sediment Activity Answer Key 1. Were your predictions close to where calcareous and siliceous oozes actually occur? Answers vary. 2. How does your map compare with the sediment distribution map? Answers vary. 3. Which type of ooze dominates the ocean sediments, calcareous or siliceous? Why? Calcareous sediments are formed from the remains of organisms like plankton with calcium-based skeletons1, such as foraminifera, while siliceous ooze is formed from the remains of organisms with silica-based skeletons like diatoms or radiolarians. Calcareous ooze dominates ocean sediments. Organisms with calcium-based shells such as foraminifera are abundant and widely distributed throughout the world’s ocean basins –more so than silica-based organisms. Silica-based phytoplankton such as diatoms are more limited in distribution by their (higher) nutrient requirements and temperature ranges. 4. What parts of the ocean do not have calcareous ooze? What might be some reasons for this? Remember that ooze forms when remains of organisms compose more than 30% of the sediment. The edges of ocean basins bordering land tend to have a greater abundance of lithogenous sediment –sediment that is brought into the ocean by water and wind. The proportion of lithogenous sediment decreases however as you move away from the continental shelf. In nutrient rich areas such as upwelling zones in the polar and equatorial regions, silica-based organisms such as diatoms or radiolarians will dominate, making the sediments more likely to be a siliceous-based ooze. Further, factors such as depth, temperature, and pressure can affect the ability of calcium carbonate to dissolve. Areas of the ocean that lie beneath the carbonate compensation depth (CCD), below which calcium carbonate dissolves, typically beneath 4-5 km, will be dominated by siliceous ooze because calcium-carbonate-based material would dissolve in these regions. -
Four Hundred Million Years of Silica Biomineralization in Land Plants
Four hundred million years of silica biomineralization in land plants Elizabeth Trembath-Reicherta,1, Jonathan Paul Wilsonb, Shawn E. McGlynna,c, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; bDepartment of Biology, Haverford College, Haverford, PA 19041; and cGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved February 20, 2015 (received for review January 7, 2015) Biomineralization plays a fundamental role in the global silicon Silica is widely used within plants for structural support and cycle. Grasses are known to mobilize significant quantities of Si in pathogen defense (19–21), but it remains a poorly understood the form of silica biominerals and dominate the terrestrial realm aspect of plant biology. Recent work on the angiosperm Oryza today, but they have relatively recent origins and only rose to sativa demonstrated that silica accumulation is facilitated by taxonomic and ecological prominence within the Cenozoic Era. transmembrane proteins expressed in root cells (21–24). Phy- This raises questions regarding when and how the biological silica logenetic analysis revealed that these silicon transport proteins cycle evolved. To address these questions, we examined silica were derived from a diverse family of modified aquaporins that abundances of extant members of early-diverging land plant include arsenite and glycerol transporters (19, 21, 25, 26). A clades, which show that silica biomineralization is widespread different member of this aquaporin family was recently identi- across terrestrial plant linages. Particularly high silica abundances fied that enables silica uptake in the horsetail Equisetum,an are observed in lycophytes and early-diverging ferns. -
7.014 Handout PRODUCTIVITY: the “METABOLISM” of ECOSYSTEMS
7.014 Handout PRODUCTIVITY: THE “METABOLISM” OF ECOSYSTEMS Ecologists use the term “productivity” to refer to the process through which an assemblage of organisms (e.g. a trophic level or ecosystem assimilates carbon. Primary producers (autotrophs) do this through photosynthesis; Secondary producers (heterotrophs) do it through the assimilation of the organic carbon in their food. Remember that all organic carbon in the food web is ultimately derived from primary production. DEFINITIONS Primary Productivity: Rate of conversion of CO2 to organic carbon (photosynthesis) per unit surface area of the earth, expressed either in terns of weight of carbon, or the equivalent calories e.g., g C m-2 year-1 Kcal m-2 year-1 Primary Production: Same as primary productivity, but usually expressed for a whole ecosystem e.g., tons year-1 for a lake, cornfield, forest, etc. NET vs. GROSS: For plants: Some of the organic carbon generated in plants through photosynthesis (using solar energy) is oxidized back to CO2 (releasing energy) through the respiration of the plants – RA. Gross Primary Production: (GPP) = Total amount of CO2 reduced to organic carbon by the plants per unit time Autotrophic Respiration: (RA) = Total amount of organic carbon that is respired (oxidized to CO2) by plants per unit time Net Primary Production (NPP) = GPP – RA The amount of organic carbon produced by plants that is not consumed by their own respiration. It is the increase in the plant biomass in the absence of herbivores. For an entire ecosystem: Some of the NPP of the plants is consumed (and respired) by herbivores and decomposers and oxidized back to CO2 (RH). -
Petrology, Diagenesis, and Genetic Stratigraphy of the Eocene Baca Formation, Alamo Navajo Reservation and Vicinity, Socorro County, New Mexico
OPEN FILE REPORT 125 PETROLOGY, DIAGENESIS, AND GENETIC STRATIGRAPHY OF THE EOCENE BACA FORMATION, ALAMO NAVAJO RESERVATION AND VICINITY, SOCORRO COUNTY, NEW MEXICO APPROVED : PETROLOGY, DIAGENESIS, AND GENETIC STRATIGRAPHYOF THE EOCENE BACA FORMATION, ALAMO NAVAJO RESERVATION AND VICINITY, SOCORRO COUNTY, NEW MEXICO by STEVEN MARTIN CATHER,B.S. THESIS Presented to the Facultyof the Graduate School of The Universityof Texas at Austin in Partial Fulfillment of the Requirements for the Degreeof MASTER OF ARTS THE UNIVERSITYOF TEXAS AT AUSTIN August 1980 ACKNOWLEDGMENTS I wish to sincerelythank Drs. R. L. Folkand C. E. Chapin fortheir enthusiasmtoward this study and theirpatience in tutoring a novicegeologist in their respectivefields of expertise. Dr. A. J. Scott provided many helpful comments concerning lacustrinesedimentation and thesisillustrations. Discussions with BruceJohnson contributedgreatly to my understanding of thedistribution of facies and paleoenvironments within the Baca-Eagar basin. I would also like to thank my colleaguesin Austin and e Socorrofor their helpful comments and criticisms. Bob Blodgettserved as studenteditor. Finally, I would like to acknowledge JerryGarcia, who providedunending inspiration and motivation throughout the course of this study. Financialsupport for field work and the writing of this manuscript wa-s generously provided by the New Mexico Bureau of Mines andMineral Resources. The University of TexasGeology Foundationalso provided funds for travel expenses and field work. This thesis was submitted tothe committee in June, 1980. iii PETROLOGY, DIAGENESIS, AND GENETIC STRATIGRAPHY OF THE EOCENE BACA FORMATION, AIAMO NAVAJO RESERVATION AND VICINITY, SOCORRO COUNTY, NEW MEXICO by Steven M. Cather ABSTRACT The Eocene Baca Formation of New Mexico and. correlative EagarFormation and Mogollon Rim gravels of Arizonacomprise a redbedsequence conglomerate,of sandstone, mudstone,and claystone which cropsout from near Socorro, New Mexico, to the Mogollon Rim of Arizona. -
Geochemical Cycle
Geochemical cycle In Earth science, a geochemical cycle is the pathway that chemical elements take in the surface and crust of the Earth.[1] The term "geochemical" tells us that geological and chemical factors are all included. The migration of heated and compressed chemical elements and compounds such as silicon, aluminium, and general alkali metals through the means of subduction and volcanism is known in the geological world as geochemical cycles. The geochemical cycle encompasses the natural separation and concentration of elements and heat-assisted recombination processes. Changes may not be apparent over a short term, such as with biogeochemical cycles, but over a long term changes of great magnitude occur, including the evolution of continents and oceans.[1] Contents Differentiating biogeochemical cycles Earth system Pathways Important cycles See also References Differentiating biogeochemical cycles Some may use the terms biogeochemical cycle and geochemical cycle interchangeably because both cycles deal with Earth's reservoirs. However, a biogeochemical cycle refers to the chemical interactions in surface reservoirs such as the atmosphere, hydrosphere, lithosphere, and biosphere whereas a geochemical cycle refers to the chemical interactions that exist in crustal and sub crustal reservoirs such as the deep earth and lithosphere. Earth system The Earth, as a system, is open to radiation from the sun and space, but is practically closed with regard to matter.[2] As all closed systems, it follows the law of conservation of mass which -
Bacterial Production and Respiration
Organic matter production % 0 Dissolved Particulate 5 > Organic Organic Matter Matter Heterotrophic Bacterial Grazing Growth ~1-10% of net organic DOM does not matter What happens to the 90-99% of sink, but can be production is physically exported to organic matter production that does deep sea not get exported as particles? transported Export •Labile DOC turnover over time scales of hours to days. •Semi-labile DOC turnover on time scales of weeks to months. •Refractory DOC cycles over on time scales ranging from decadal to multi- decadal…perhaps longer •So what consumes labile and semi-labile DOC? How much carbon passes through the microbial loop? Phytoplankton Heterotrophic bacteria ?? Dissolved organic Herbivores ?? matter Higher trophic levels Protozoa (zooplankton, fish, etc.) ?? • Very difficult to directly measure the flux of carbon from primary producers into the microbial loop. – The microbial loop is mostly run on labile (recently produced organic matter) - - very low concentrations (nM) turning over rapidly against a high background pool (µM). – Unclear exactly which types of organic compounds support bacterial growth. Bacterial Production •Step 1: Determine how much carbon is consumed by bacteria for production of new biomass. •Bacterial production (BP) is the rate that bacterial biomass is created. It represents the amount of Heterotrophic material that is transformed from a nonliving pool bacteria (DOC) to a living pool (bacterial biomass). •Mathematically P = µB ?? µ = specific growth rate (time-1) B = bacterial biomass (mg C L-1) P= bacterial production (mg C L-1 d-1) Dissolved organic •Note that µ = P/B matter •Thus, P has units of mg C L-1 d-1 Bacterial production provides one measurement of carbon flow into the microbial loop How doe we measure bacterial production? Production (∆ biomass/time) (mg C L-1 d-1) • 3H-thymidine • 3H or 14C-leucine Note: these are NOT direct measures of biomass production (i.e. -
Fractionation and Characterization of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis
Fractionation and Characterization of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1817-E Fractionation and Characterzation of Natural Organic Matter from Certain Rivers and Soils by Free-Flow Electrophoresis By J. A. LEENHEER and R. L. MALCOLM ORGANIC SUBSTANCES IN WATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1817-E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600209 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington, D. C. 20402 - Price 35 cents (paper cov«?r) Stock No. 2401-02400 CONTENTS Page Abstract ___________________________________________ El Introduction __________________________________ __ 1 Methods and materials __________________________________ 3 Sample preparation ______ _______ _ __ 3 Sample description _________________________________ 3 Separation procedure _______ ___________ __ 4 Assay of fractions ___________________________________ 4 Results and discussion _ _______________ 5 Conclusions ________________________________________ 12 References _____________________________________ __ 14 ILLUSTRATIONS Page FIGURES 1-3. Graphs showing: 1. Organic-carbon and optical-density electrophoretic fraction- ation curves for organic materials from soil and from river water ___________________________ E6 2. Organic-carbon and polysaccharide electrophoretic -
Oregon Department of Human Services HEALTH EFFECTS INFORMATION
Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions. -
Ocean Acidification and Oceanic Carbon Cycling 13
Ocean Acidification and Oceanic Carbon Cycling 13 Dieter A. Wolf-Gladrow and Bjo¨rn Rost Contents Atmospheric CO2 ............................................................................... 104 Air-Sea CO2 Exchange and Ocean Carbonate Chemistry ..................................... 104 Rate of Surface Ocean Acidification and Regional Differences .. ........................... 104 The Physical Carbon Pump and Climate Change .............................................. 105 Impact of Ocean Acidification on Marine Organisms and Ecosystems ....................... 106 The Biological Carbon Pump and Climate Change ............................................ 107 Take-Home Message ............................................................................ 108 References ....................................................................................... 109 Abstract The concentration of atmospheric CO2 is increasing due to emissions from burning of fossil fuels and changes in land use. Part of this “anthropogenic CO2” invades the oceans causing a decrease of seawater pH; this process is called “ocean acidification.” The lowered pH, but also the concomitant changes in other properties of the carbonate system, affects marine life and the cycling of carbon in the ocean. Keywords Anthropogenic CO2 • Seawater acidity • Saturation state • Climate change • Physical carbon pump • Global warming • Biological carbon pumps • Phyto- plankton • Primary production • Calcification D.A. Wolf-Gladrow (*) • B. Rost Alfred Wegener Institute, Helmholtz Centre -
Calcareous Soils Are Alkaline
By Mongi Zekri, Tom Obreza and Kelly Morgan alcareous soils are alkaline (pH > 7) due to the pres- ence of excess calcium carbonate (CaCO3). These soils Ccan contain from 1 percent to more than 25 percent CaCO3 by weight, with pH in the range of 7.6 to 8.4. In Florida, soil pH is usually not higher than 8.4 regardless of CaCO3 concentration. Many Florida flatwoods soils contain one or more hori- zons (layers) that are calcareous. A typical characteristic is an alkaline, loamy horizon less than 40 inches deep that can be brought to the surface during land preparation for citrus Calcareous soil in Southwest Florida planting. Increased nutritional management intensity is re- quired to successfully grow citrus on calcareous soils. Some lution of fixed P. Applied P is available to replenish the soil grove soils (e.g. ditch banks) contain considerable amounts solution for only a relatively short time before it converts to of lime rock or shell. It may not be economically justifiable less soluble forms of P. To maintain P availability to citrus to plant these sites with certain rootstocks considering the on calcareous soils, water-soluble P fertilizer should be ap- management problems and costs involved. plied on a regular, but not necessarily frequent, basis. Since Citrus fertilizer management on calcareous soils differs P accumulates in the soil, it is at least partially available as from that on non-calcareous soils because the presence of it converts to less soluble compounds with time. CaCO3 directly or indirectly affects plant availability of N, Potassium (K) P, K, Calcium (Ca), Mg, Mn, Zn, Fe and Cu.