Venatorbacter Cucullus Gen. Nov Sp. Nov a Novel Bacterial Predator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
microorganisms Article Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide Kelly J. Hidalgo 1,2,* , Isabel N. Sierra-Garcia 3 , German Zafra 4 and Valéria M. de Oliveira 1 1 Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas–UNICAMP, Av. Alexandre Cazellato 999, 13148-218 Paulínia, Brazil; [email protected] 2 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, 13083-862 Campinas, Brazil 3 Biology Department & CESAM, University of Aveiro, Aveiro, Portugal, Campus de Santiago, Avenida João Jacinto de Magalhães, 3810-193 Aveiro, Portugal; [email protected] 4 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, Cra 27 calle 9, 680002 Bucaramanga, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +55-19981721510 Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied. -
Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen. -
Oil Type and Temperature Dependent Biodegradation Dynamics
Ribicic et al. BMC Microbiology (2018) 18:83 https://doi.org/10.1186/s12866-018-1221-9 RESEARCH ARTICLE Open Access Oil type and temperature dependent biodegradation dynamics - Combining chemical and microbial community data through multivariate analysis Deni Ribicic1,2* , Kelly Marie McFarlin1, Roman Netzer1, Odd Gunnar Brakstad1, Anika Winkler3, Mimmi Throne-Holst1 and Trond Røvik Størseth1 Abstract Background: This study investigates a comparative multivariate approach for studying the biodegradation of chemically dispersed oil. The rationale for this approach lies in the inherent complexity of the data and challenges associated with comparing multiple experiments with inconsistent sampling points, with respect to inferring correlations and visualizing multiple datasets with numerous variables. We aim to identify novel correlations among microbial community composition, the chemical change of individual petroleum hydrocarbons, oil type and temperature by creating modelled datasets from inconsistent sampling time points. Four different incubation experiments were conducted with freshly collected Norwegian seawater and either Grane and Troll oil dispersed with Corexit 9500. Incubations were conducted at two different temperatures (5 °C and 13 °C) over a period of 64 days. Results: PCA analysis of modelled chemical datasets and calculated half-lives revealed differences in the biodegradation of individual hydrocarbons among temperatures and oil types. At 5 °C, most n-alkanes biodegraded faster in heavy Grane oil compared to light Troll oil. PCA analysis of modelled microbial community datasets reveal differences between temperature and oil type, especially at low temperature. For both oils, Colwelliaceae and Oceanospirillaceae were more prominent in the colder incubation (5 °C) than the warmer (13 °C). Overall, Colwelliaceae, Oceanospirillaceae, Flavobacteriaceae, Rhodobacteraceae, Alteromonadaceae and Piscirickettsiaceae consistently dominated the microbial community at both temperatures and in both oil types. -
Mangrove Bacterial Diversity and the Impact of Oil Contamination Revealed by Pyrosequencing: Bacterial Proxies for Oil Pollution
Mangrove Bacterial Diversity and the Impact of Oil Contamination Revealed by Pyrosequencing: Bacterial Proxies for Oil Pollution Henrique Fragoso dos Santos1, Juliano Carvalho Cury1, Fla´via Lima do Carmo1, Adriana Lopes dos Santos1,2, James Tiedje2, Jan Dirk van Elsas3, Alexandre Soares Rosado1, Raquel Silva Peixoto1* 1 Laboratory of Molecular Microbial Ecology, Departamento of General Microbiology, Institute of Microbiology Paulo de Go´es, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil, 2 Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America, 3 Department of Microbial Ecology, University of Groningen, Groningen, The Netherlands Abstract Background: Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. Methodology/Principal Findings: A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
EMBRIC (Grant Agreement No
Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Grant Agreement Number: 654008 EMBRIC European Marine Biological Research Infrastructure Cluster to promote the Blue Bioeconomy Horizon 2020 – the Framework Programme for Research and Innovation (2014-2020), H2020-INFRADEV-1-2014-1 Start Date of Project: 01.06.2015 Duration: 48 Months Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery (M36) HORIZON 2020 - INFRADEV Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 1 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Implementation and operation of cross-cutting services and solutions for clusters of ESFRI Grant agreement no.: 654008 Project acronym: EMBRIC Project website: www.embric.eu Project full title: European Marine Biological Research Infrastructure cluster to promote the Bioeconomy Project start date: June 2015 (48 months) Submission due date : May 2018 Actual submission date: May 2018 Work Package: WP 6 Microbial pipeline from environment to active compounds Lead Beneficiary: CABI Version: 9.0 Authors: SMITH David GOSS Rebecca OVERMANN Jörg BRÖNSTRUP Mark PASCUAL Javier BAJERSKI Felizitas HENSLER Michael WANG Yunpeng ABRAHAM Emily Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 2 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. 654008) Project funded by the European Union’s Horizon 2020 research and innovation programme (2015-2019) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission X Services Deliverable D6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery Page 3 of 85 Deliverable D6.1 EMBRIC (Grant Agreement No. -
Large Scale Biogeography and Environmental Regulation of 2 Methanotrophic Bacteria Across Boreal Inland Waters
1 Large scale biogeography and environmental regulation of 2 methanotrophic bacteria across boreal inland waters 3 running title : Methanotrophs in boreal inland waters 4 Sophie Crevecoeura,†, Clara Ruiz-Gonzálezb, Yves T. Prairiea and Paul A. del Giorgioa 5 aGroupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), 6 Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada 7 bDepartment of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, 8 Catalunya, Spain 9 Correspondence: Sophie Crevecoeur, Canada Centre for Inland Waters, Water Science and Technology - 10 Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Burlington, Ontario, Canada, e-mail: [email protected] 12 † Current address: Canada Centre for Inland Waters, Water Science and Technology - Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada 1 13 Abstract 14 Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby 15 mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and 16 phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain 17 the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here we used high 18 throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic 19 community composition and the environmental factors that influence their distribution and relative 20 abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal 21 landscape. Within one region, soil and soil water samples were additionally taken from the surrounding 22 watersheds in order to cover the full terrestrial-aquatic continuum. -
Ecological Drivers of Bacterial Community Assembly in Synthetic Phycospheres
Ecological drivers of bacterial community assembly in synthetic phycospheres He Fua, Mario Uchimiyaa,b, Jeff Gorec, and Mary Ann Morana,1 aDepartment of Marine Sciences, University of Georgia, Athens, GA 30602; bComplex Carbohydrate Research Center, University of Georgia, Athens, GA 30602; and cDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved January 6, 2020 (received for review October 3, 2019) In the nutrient-rich region surrounding marine phytoplankton The ecological mechanisms that influence the assembly of cells, heterotrophic bacterioplankton transform a major fraction of phycosphere microbiomes are not well understood, however, in recently fixed carbon through the uptake and catabolism of part because of the micrometer scale at which bacterial commu- phytoplankton metabolites. We sought to understand the rules by nities congregate. It remains unclear whether simple rules exist which marine bacterial communities assemble in these nutrient- that could predict the composition of these communities. enhanced phycospheres, specifically addressing the role of host Phycospheres are short-lived in the ocean, constrained by the resources in driving community coalescence. Synthetic systems with 1- to 2-d average life span of phytoplankton cells (20, 21). The varying combinations of known exometabolites of marine phyto- phycosphere bacterial communities must therefore form and dis- plankton were inoculated with seawater bacterial assemblages, and perse rapidly within a highly dynamic metabolite landscape (14). communities were transferred daily to mimic the average duration We hypothesized a simple rule for assembly in metabolically di- of natural phycospheres. We found that bacterial community verse phycospheres in which communities congregate as the sum assembly was predictable from linear combinations of the taxa of discrete metabolite guilds (22). -
Metaproteomics Characterization of the Alphaproteobacteria
Avian Pathology ISSN: 0307-9457 (Print) 1465-3338 (Online) Journal homepage: https://www.tandfonline.com/loi/cavp20 Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar To cite this article: José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar (2019) Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssusgallinae (De Geer, 1778), Avian Pathology, 48:sup1, S52-S59, DOI: 10.1080/03079457.2019.1635679 To link to this article: https://doi.org/10.1080/03079457.2019.1635679 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 03 Submit your article to this journal Jul 2019. Published online: 02 Aug 2019. Article views: 694 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cavp20 AVIAN PATHOLOGY 2019, VOL. 48, NO. S1, S52–S59 https://doi.org/10.1080/03079457.2019.1635679 ORIGINAL ARTICLE Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero a,b, Sandra Díaz-Sanchez a, Olivier Sparagano c, Robert D. Finn d, José de la Fuente a,e and Margarita Villar a aSaBio. -
Dynamics of Bacterial Assemblages and Removal of Polycyclic Aromatic Hydrocarbons in Oil- Contaminated Coastal Marine Sediments Subjected to Contrasted Oxygen Regimes
Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 14472 To link to this article : doi: 10.1007/s11356-015-4510-y URL : http://dx.doi.org/10.1007/s11356-015-4510-y To cite this version : Militon, Cécile and Jezequel, Ronan and Gilbert, Franck and Corsellis, Yannick and Sylvi, Léa and Cravo-Laureau, Cristiana and Duran, Robert and Cuny, Philippe Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil- contaminated coastal marine sediments subjected to contrasted oxygen regimes. (2015) Environmental Science and Pollution Research, vol. 22 (n° 20). pp. 15260-15272. ISSN 0944-1344 Any correspondance concerning this service should be sent to th e repository administrator: [email protected] DOI 10.1007/s11356-015-4510-y Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes Cécile Militon1,6 & Ronan Jézéquel2 & Franck Gilbert3,4 & Yannick Corsellis1 & Léa Sylvi1 & Cristiana Cravo-Laureau5 & Robert Duran5 & Philippe Cuny1 Abstract To study the impact of oxygen regimes on the re- genes/16S rRNA transcripts approach, allowing the character- moval of polycylic aromatic hydrocarbons (PAHs) in oil-spill- ization of metabolically active bacteria responsible for the affected coastal marine sediments, we used a thin-layer incu- functioning of the bacterial community in the contaminated bation method to ensure that the incubated sediment was fully sediment.