Temporal Description Logics over Finite Traces Alessandro Artale, Andrea Mazzullo, Ana Ozaki KRDB Research Centre, Free University of Bozen-Bolzano, Italy
[email protected] Abstract. Linear temporal logic interpreted over finite traces (LTLf ) has been used as a formalism for temporal specification in automated planning, process modelling and (runtime) verification. In this paper, we lift some results from the propositional case to a decidable fragment of first-order temporal logic obtained by combining the description logic ALC f with LTLf , denoted as TU ALC. We show that the satisfiability problem f in TU ALC is ExpSpace-complete, as already known for the infinite trace case, while it decreases to NExpTime when we consider finite traces with a fixed number of instants, and even to ExpTime when additionally restricting to globally interpreted TBoxes. Moreover, we investigate two f model-theoretical notions for TU ALC: we show that, differently from the infinite trace case, it enjoys the bounded model property; we also discuss the notion of insensitivity to infiniteness, providing characterisations and sufficient conditions to preserve it. 1 Introduction Since the introduction of linear temporal logic (LTL) by Pnueli [33], several (propositional and first-order) LTL-based formalisms have been developed for applications such as automated planning [11, 12, 15–17], process modelling [1, 31] and (runtime) verification of programs [14, 24, 32–35]. Related research in knowledge representation has focussed on decidable fragments of first-order LTL [28], many of them obtained by combining LTL with description logics (DLs), and for this reason called temporal description logics (TDLs) [3, 4, 30, 36].