Logical Methods in Computer Science Vol. 5 (1:1) 2009, pp. 1–1–21 Submitted Mar. 28, 2008 www.lmcs-online.org Published Jan. 26, 2009 THE COMPLEXITY OF GENERALIZED SATISFIABILITY FOR LINEAR TEMPORAL LOGIC MICHAEL BAULAND a, THOMAS SCHNEIDER b, HENNING SCHNOOR c, ILKA SCHNOOR d, AND HERIBERT VOLLMER e a Knipp GmbH, Martin-Schmeißer-Weg 9, 44227 Dortmund, Germany e-mail address:
[email protected] b School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK e-mail address:
[email protected] c Inst. f¨ur Informatik, Christian-Albrechts-Universit¨at zu Kiel, 24098 Kiel, Germany e-mail address:
[email protected] d Inst. f¨ur Theoretische Informatik, Universit¨at zu L¨ubeck, Ratzeburger Allee 160, 23538 L¨ubeck, Germany e-mail address:
[email protected] e Inst. f¨ur Theoretische Informatik, Universit¨at Hannover, Appelstr. 4, 30167 Hannover, Germany e-mail address:
[email protected] Abstract. In a seminal paper from 1985, Sistla and Clarke showed that satisfiability for Linear Temporal Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set of temporal operators used. If, in contrast, the set of propositional operators is restricted, the complexity may decrease. This paper undertakes a systematic study of satisfiability for LTL formulae over restricted sets of propositional and temporal opera- tors. Since every propositional operator corresponds to a Boolean function, there exist infinitely many propositional operators. In order to systematically cover all possible sets of them, we use Post’s lattice. With its help, we determine the computational complexity of LTL satisfiability for all combinations of temporal operators and all but two classes of propositional functions.