Origin of the Genus Homo Holly M

Total Page:16

File Type:pdf, Size:1020Kb

Origin of the Genus Homo Holly M University of Rhode Island DigitalCommons@URI Sociology & Anthropology Faculty Publications Sociology & Anthropology 2010 Origin of the Genus Homo Holly M. Dunsworth University of Rhode Island, [email protected] Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/soc_facpubs Citation/Publisher Attribution Dunsworth, Holly M. "Origin of the genus Homo." Evolution: Education and Outreach, vol. 3, no. 3, 2010, pp. 353-366. http://www.dx.doi.org./10.1007/s12052-010-0247-8 Available at: http://www.dx.doi.org./10.1007/s12052-010-0247-8 This Article is brought to you for free and open access by the Sociology & Anthropology at DigitalCommons@URI. It has been accepted for inclusion in Sociology & Anthropology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Evo Edu Outreach (2010) 3:353–366 DOI 10.1007/s12052-010-0247-8 ORIGINAL SCIENTIFIC ARTICLE Origin of the Genus Homo Holly M. Dunsworth Published online: 11 August 2010 # Springer Science+Business Media, LLC 2010 Abstract The origin of the genus Homo in Africa signals trends, canine reduction and postcranial metamorphosis in the beginning of the shift from increasingly bipedal apes to the following genera: Sahelanthropus, Orrorin, Ardipithe- primitive, large-brained, stone tool-making, meat-eaters that cus, Australopithecus, and Paranthropus. As the Pliocene traveled far and wide. This early part of the human genus is epoch came to a close and global climate was shifting at represented by three species: Homo habilis, Homo rudol- about 2.5 million years ago (deMenocal 2004), there is a fensis, and Homo erectus. H. habilis is known for retaining concomitant change in the hominin fossil record. In this primitive features that link it to australopiths and for being increasingly cooler world, something new, both anatomi- the first stone tool makers. Little is known about H. cally and behaviorally, emerged. This is the origin of the rudolfensis except that it had a relatively large brain and genus Homo. large teeth compared to H. habilis and that it overlapped in Of the earliest members of the genus Homo, the best- time and space with other early Homo. Our understanding known species are Homo habilis, Homo rudolfensis, and of the paleobiology and evolution of the larger-brained H. Homo erectus (Table 1). Listed roughly in order of their erectus is enhanced due to its rich fossil record. H. erectus earliest appearance from oldest to youngest, these three was the first obligate, fully committed biped, and with a species are the focus of this review. The first two species body adapted for modern striding locomotion, it was also are the most primitive. Compared to what is known about the first in the human lineage to disperse outside of Africa. H. erectus, little is known about how they differ in anatomy The early members of the genus Homo are the first to tip and behavior from one another and from preceding the scale from the more apish side of our evolutionary australopiths. Although it was anatomically and behavior- history toward the more human one. ally primitive compared to modern humans, H. erectus signifies a major shift in hominin evolution, most notably Keywords Paleoanthropology. Homo . H. habilis . through increased brain and body size and increasingly H. rudolfensis . H. erectus . Pleistocene . Oldowan . complex tools and behaviors. Acheulean . Bipedalism . Encephalization It is generally agreed upon that H. habilis, spanning from 2.3 to 1.4 million years ago, is descended from a species of Australopithecus.IfH. habilis evolved in East Africa, then Introduction Australopithecus afarensis and Australopithecus garhi are its possible ancestors, but if H. habilis evolved in South For the first, four million years or so of hominin evolution, Africa, then Australopithecus africanus and Australopithe- the hominin fossil record is characterized by, among other cus sediba are candidates. Future fossil discoveries will probably answer this question. However, based on what is already known about H. habilis, it widely accepted that it is H. M. Dunsworth (*) the common ancestor of all later species in the genus Homo Department of Anthropology, Northeastern Illinois University, including our own, Homo sapiens. 5500 N St. Louis Ave, — Chicago, IL 60625, USA H. habilis and H. rudolfensis the poorly understood, but e-mail: [email protected] slightly larger species dated to about 1.9 million years ago 354 Evo Edu Outreach (2010) 3:353–366 (Fig. 1)—arerestrictedtoEastandSouthAfrica.However, H. erectus, which diverged from H. habilis around 1.8 million years ago, marks the first hominin to disperse outside of Africa. Between about 1.9 and 1.8 million years ago, there is evidence for geographic and temporal overlap of all three early Homo species in East Africa. The exceptionally large-toothed and strong-jawed robust australopiths (Paranthropus, which also descended from an earlier Australopithecus species), with their distinct dietary niche, one of tough nuts, seeds and fruits and fibrous vegetation, continued to thrive in some of the same localities as these species of early Homo, but they remained evolutionarily separate. Early Homo is distinguishable from contemporaneous robust australopiths by their smaller Trinil, Java, Indonesia; Zhoukoudian,and Hexian, Gongwangling, Nanjing, China; Narmada,Georgia; India; Salé, Dmanisi, Morocco; Buia,Awash, Eritrea; Ethiopia; Daka, Ileret, Middle KoobiWest Fora, Turkana, Olorgesailie, Kenya; and OlduvaiSterkfontein Gorge, and Tanzania; Swartkrans, South Africa Gorge, Tanzania; Drimolen, Sterkfontein,Swartkrans, and South Africa teeth and jaws and by larger cranial capacity. Omo, Ethiopia; Ileret and Koobi Fora, Kenya; Olduvai Koobi Fora, Kenya; Uraha, Malawi Mojokerto, Ngandong, Sambungmachan, Sangiran, and Because it is more derived, H. erectus is more easily distinguished from earlier hominins and Paranthropus— ; not just in craniodental anatomy but in body proportions ; ; and postcranial morphology as well. H. erectus is nearly modern in its postcranial anatomy, with few exceptions. Homo ; Within Africa, early H. erectus overlapped with the two other species of early Homo but eventually far outlasted habilis rudolfensis Australopithecus rudolfensis Homo georgicus Homo erectus sensu stricto Australopithecus Homo habilis Homo ergaster them. Outside of Africa, H. erectus fossils are the most primitive hominins yet discovered, and remains have been recovered from sites across Eurasia and Indonesia, beginning as early as about 1.8 million years ago and spanning over one million years, disappearing in Asia by about 400 thousand years ago (Shen et al. 2009). It is possible that the last H. erectus may have survived in Indonesia as recently as 30,000 years ago (Swisher et al. 1996), after H. sapiens had already reached the region, but this date is controversial and may be soon replaced by a much older estimate of about 550,000 years ago (Indriati et al. 2010). Regardless of its extinction date, H. erectus KNM-ER 42703 (maxilla); OHhand); 7 OH (type; 8 parts (foot); ofOH OH skull, 62 16 (partial (cranium); skeleton); OHSK OH 24 847 65 (cranium); (cranium) (maxilla); Ngandong 13 (cranial vault);Sangiran Sangiran 17 2 (cranium); (cranial Trinil vault); Zhoukoudian 2 XII (type; (calvaria); skullcap); D2280D2700 (calvaria); (cranium); D2282 D3444 (cranium); (cranium);KNM-ER KNM-ER 1481 992 (femur); (mandible); KNM-ERKNM-ER 3733 3883 (cranium); (cranium); KNM-ERKNM-OG 42700 45500 (cranial (cranial vault); vault);OH KNM-WT 9 15000 (cranial (skeleton); vault); OH 28 (partial pelvis) Key specimens Alternative taxonomy Key sites 1.4 KNM-ER 1805 (cranium); KNM-ER 1813 (cranium); 0.4 Perning 1 (calvaria); Ngandong 7 (cranial vault); – – years ago 2.4 1.91.8 KNM-ER 1470 (type; cranium); UR 501 (mandible) Homo Early genus Fig. 1 Both found in the early 1970s at sites at Koobi Fora, Kenya, these skulls, from left to right, of H. habilis (KNM-ER 1813) and H. rudolfensis (KNM-ER 1470) represent the variation in size exhibited Table 1 SpeciesHomo habilis Millions of Homo rudolfensis Homo erectus by early Homo. Photographs by Alan Walker Evo Edu Outreach (2010) 3:353–366 355 thrived and evolved across the tropical and temperate dated to about 2.4–2.0 million years ago; (g) a partial regions of the Old World with a much wider geographic cranium with teeth (attributed to A. garhi; Asfaw et al. distribution than any preceding hominins. 1999) and associated limb bones from the Hata Member, As with so many mammalian extinctions in the Bouri Formation of Ethiopia, dated to about 2.5 million Pleistocene fossil record, it is unclear why H. erectus did years ago. not survive to the present day, except that later species of Another candidate for earliest Homo has recently been Homo had much bigger brains, much more sophisticated announced. The remains of two partial skeletons from technology, and either indirectly or directly out-competed Malapa, South Africa, dated to 1.9 million years ago, have H. erectus at being big-brained, bipedal, stone tool-making been attributed to A. sediba (Berger et al. 2010), but their hominins. Homo-like traits (e.g., small premolars and molars and Because the fossil record is denser for this species, the derived bipedal traits in the pelvis and legs) beckon variation in H. erectus is better understood than in any of researchers to test the hypotheses that these finds belong the earlier hominins. A growing proportion of researchers either to the ancestor of Homo or to the genus Homo. employ a separate species name for the earliest members None of the candidates for earliest Homo lands firmly in of H. erectus that tend to be smaller and are found mostly the known range of anatomical variation for H. habilis, H. inAfrica;theycalltheseHomo ergaster (Tattersall 2007; rudolfensis,orH. erectus. However, they all show arguable for discussion see Dunsworth and Walker 2002).
Recommended publications
  • Homo Habilis
    COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo­ ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean­ derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop­ LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect­ ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field­ work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included.
    [Show full text]
  • Homo Erectus Infancy and Childhood the Turning Point in the Evolution of Behavioral Development in Hominids
    10 Homo erectus Infancy and Childhood The Turning Point in the Evolution of Behavioral Development in Hominids Sue Taylor Parker In man, attachment is mediated by several different sorts of behaviour of which the most obvious are crying and calling, babbling and smiling, clinging, non-nutritional sucking, and locomotion as used in approach, following and seeking. —John Bowlby, Attachment The evolution of hominid behavioral ontogeny can be recon - structed using two lines of evidence: first, comparative neontological data on the behavior and development of living hominoid species (humans and the great apes), and second, comparative paleontolog- ical and archaeological evidence associated with fossil hominids. (Although behavior rarely fossilizes, it can leave significant traces.) 1 In this chapter I focus on paleontological and neontological evi - dence relevant to modeling the evolution of the following hominid adaptations: (1) bipedal locomotion and stance; (2) tool use and tool making; (3) subsistence patterns; (4) growth and development and other life history patterns; (5) childbirth; (6) childhood and child care; and (7) cognition and cognitive development. In each case I present a cladistic model for the origins of the characters in question. 2 Specifically, I review pertinent data on the following widely recog - nized hominid genera and species: Australopithecus species (A. afarensis , A. africanus , and A. robustus [Paranthropus robustus]) , early Homo species (Australopithecus gahri , Homo habilis , and Homo rudolfensis) , and Middle Pleistocene Homo species (Homo erectus , Homo ergaster , and others), which I am calling erectines . Copyrighted Material www.sarpress.org 279 S UE TAYLOR PARKER Table 10.1 Estimated Body Weights and Geological Ages of Fossil Hominids _______________________________________________________________________ Species Geologic Age Male Weight Female Weight (MYA) (kg) (kg) _______________________________________________________________________ A.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • NEW ARCHAEOLOGICAL PUBLICATIONS in GEORGIA VAKHTANG LICHELI Otar Lortqifanize, Zveli Qartuli Civilizaciis Sataveebtan
    ACSS_F8_314-322 1/10/07 3:14 PM Page 315 NEW ARCHAEOLOGICAL PUBLICATIONS IN GEORGIA VAKHTANG LICHELI Otar Lortqifanize, Zveli qartuli civilizaciis sataveebtan (The Sources of Ancient Georgian Civilization). Tbilisi, State University of Tbilisi, 2002, 338 pages, ISBN 99928-931-3-3 (In Georgian) This book by the well-known Georgian archaeologist, who founded the Centre for Archaeological Research of the Georgian Academy of Sciences, Academician Otar Lordkipanidze, is a third revised and extended edition. The Russian version was published as far back as 1989 in Tbilisi under the title The Heritage of Ancient Georgia. The next edition appeared in Germany in German as Archäologie in Georgien. Von der Altsteinzeit zum Mittelalter (Weinheim, VCH, Acta Humaniora) in 1991. The Georgian edition has been revised and extended: archaeological mater- ial has been added and it now contains a review of the scholarly literature up to the year 2000. The book consists of an introduction and four chapters, illus- trations and – what is particularly important – an extended bibliography with 1717 titles and a virtually complete list of publications on Georgian archaeol- ogy in Georgian, Russian and other languages. Apart from the research which occupies the main part of the book, this additional section is particularly valu- able, since O. Lordkipanidze had been the first to collect and analyze works on all questions concerning Georgian archaeology. The introduction examines questions relating to the origin and ethno- linguistic history of the Georgians, written sources in Georgian and other lan- guages; it also presents the reader with toponymic, onomastic, linguistic, ethnographic and archaeological data and information drawn from myths and folklore.
    [Show full text]
  • Darwin and the Recent African Origin of Modern Humans
    EDITORIAL Darwin and the recent African origin of modern humans Richard G. Klein1 Program in Human Biology, Stanford University, Stanford, CA 94305 n this 200th anniversary of When Darwin and Huxley were ac- The Course of Human Evolution Charles Darwin’s birth and tive, many respected scientists sub- In the absence of fossils, Darwin could the 150th anniversary of the scribed to the now discredited idea that not have predicted the fundamental pat- publication of his monumen- human races represented variably tern of human evolution, but his evolu- Otal The Origin of Species (1859) (1), it evolved populations of Homo sapiens. tionary theory readily accommodates seems fitting to summarize Darwin’s The original Neanderthal skull had a the pattern we now recognize. Probably views on human evolution and to show conspicuous browridge, and compared the most fundamental finding is that the how far we have come since. Darwin with the skulls of modern humans, it australopithecines, who existed from at famously neglected the subject in The was decidedly long and low. At the same least 4.5 million to 2 million years ago, Origin, except near the end where he time, it had a large braincase, and Hux- were distinguished from apes primarily noted only that ‘‘light would be thrown ley regarded it as ‘‘the extreme term of by anatomical specializations for habit- on the origin of man and his history’’ by a series leading gradually from it to the ual bipedalism, and it was only after 2 the massive evidence he had compiled highest and best developed of [modern] million years ago that people began to for evolution by means of natural selec- human crania.’’ It was only in 1891 that acquire the other traits, including our tion.
    [Show full text]
  • Paleoanthropology Society Meeting Abstracts, Memphis, Tn, 17-18 April 2012
    PALEOANTHROPOLOGY SOCIETY MEETING ABSTRACTS, MEMPHIS, TN, 17-18 APRIL 2012 Paleolithic Foragers of the Hrazdan Gorge, Armenia Daniel Adler, Anthropology, University of Connecticut, USA B. Yeritsyan, Archaeology, Institute of Archaeology & Ethnography, ARMENIA K. Wilkinson, Archaeology, Winchester University, UNITED KINGDOM R. Pinhasi, Archaeology, UC Cork, IRELAND B. Gasparyan, Archaeology, Institute of Archaeology & Ethnography, ARMENIA For more than a century numerous archaeological sites attributed to the Middle Paleolithic have been investigated in the Southern Caucasus, but to date few have been excavated, analyzed, or dated using modern techniques. Thus only a handful of sites provide the contextual data necessary to address evolutionary questions regarding regional hominin adaptations and life-ways. This talk will consider current archaeological research in the Southern Caucasus, specifically that being conducted in the Republic of Armenia. While the relative frequency of well-studied Middle Paleolithic sites in the Southern Caucasus is low, those considered in this talk, Nor Geghi 1 (late Middle Pleistocene) and Lusakert Cave 1 (Upper Pleistocene), span a variety of environmental, temporal, and cultural contexts that provide fragmentary glimpses into what were complex and evolving patterns of subsistence, settlement, and mobility over the last ~200,000 years. While a sample of two sites is too small to attempt a serious reconstruction of Middle Paleolithic life-ways across such a vast and environmentally diverse region, the sites
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-1-107-01829-7 - Human Adaptation in the Asian Palaeolithic: Hominin Dispersal and Behaviour during the Late Quaternary Ryan J. Rabett Index More information Index Abdur, 88 Arborophilia sp., 219 Abri Pataud, 76 Arctictis binturong, 218, 229, 230, 231, 263 Accipiter trivirgatus,cf.,219 Arctogalidia trivirgata, 229 Acclimatization, 2, 7, 268, 271 Arctonyx collaris, 241 Acculturation, 70, 279, 288 Arcy-sur-Cure, 75 Acheulean, 26, 27, 28, 29, 45, 47, 48, 51, 52, 58, 88 Arius sp., 219 Acheulo-Yabrudian, 48 Asian leaf turtle. See Cyclemys dentata Adaptation Asian soft-shell turtle. See Amyda cartilaginea high frequency processes, 286 Asian wild dog. See Cuon alipinus hominin adaptive trajectories, 7, 267, 268 Assamese macaque. See Macaca assamensis low frequency processes, 286–287 Athapaskan, 278 tropical foragers (Southeast Asia), 283 Atlantic thermohaline circulation (THC), 23–24 Variability selection hypothesis, 285–286 Attirampakkam, 106 Additive strategies Aurignacian, 69, 71, 72, 73, 76, 78, 102, 103, 268, 272 economic, 274, 280. See Strategy-switching Developed-, 280 (economic) Proto-, 70, 78 technological, 165, 206, 283, 289 Australo-Melanesian population, 109, 116 Agassi, Lake, 285 Australopithecines (robust), 286 Ahmarian, 80 Azilian, 74 Ailuropoda melanoleuca fovealis, 35 Airstrip Mound site, 136 Bacsonian, 188, 192, 194 Altai Mountains, 50, 51, 94, 103 Balobok rock-shelter, 159 Altamira, 73 Ban Don Mun, 54 Amyda cartilaginea, 218, 230 Ban Lum Khao, 164, 165 Amyda sp., 37 Ban Mae Tha, 54 Anderson, D.D., 111, 201 Ban Rai, 203 Anorrhinus galeritus, 219 Banteng. See Bos cf. javanicus Anthracoceros coronatus, 219 Banyan Valley Cave, 201 Anthracoceros malayanus, 219 Barranco Leon,´ 29 Anthropocene, 8, 9, 274, 286, 289 BAT 1, 173, 174 Aq Kupruk, 104, 105 BAT 2, 173 Arboreal-adapted taxa, 96, 110, 111, 113, 122, 151, 152, Bat hawk.
    [Show full text]
  • Lieberman 2001E.Pdf
    news and views Another face in our family tree Daniel E. Lieberman The evolutionary history of humans is complex and unresolved. It now looks set to be thrown into further confusion by the discovery of another species and genus, dated to 3.5 million years ago. ntil a few years ago, the evolutionary history of our species was thought to be Ureasonably straightforward. Only three diverse groups of hominins — species more closely related to humans than to chim- panzees — were known, namely Australo- pithecus, Paranthropus and Homo, the genus to which humans belong. Of these, Paran- MUSEUMS OF KENYA NATIONAL thropus and Homo were presumed to have evolved between two and three million years ago1,2 from an early species in the genus Australopithecus, most likely A. afarensis, made famous by the fossil Lucy. But lately, confusion has been sown in the human evolutionary tree. The discovery of three new australopithecine species — A. anamensis3, A. garhi 4 and A. bahrelghazali5, in Kenya, Ethiopia and Chad, respectively — showed that genus to be more diverse and Figure 1 Two fossil skulls from early hominin species. Left, KNM-WT 40000. This newly discovered widespread than had been thought. Then fossil is described by Leakey et al.8. It is judged to represent a new species, Kenyanthropus platyops. there was the finding of another, as yet poorly Right, KNM-ER 1470. This skull was formerly attributed to Homo rudolfensis1, but might best be understood, genus of early hominin, Ardi- reassigned to the genus Kenyanthropus — the two skulls share many similarities, such as the flatness pithecus, which is dated to 4.4 million years of the face and the shape of the brow.
    [Show full text]
  • 0205683290.Pdf
    Hominin footprints preserved at Laetoli, Tanzania, are about 3.6 million years old. These individuals were between 3 and 4 feet tall when standing upright. For a close-up view of one of the footprints and further information, go to the human origins section of the website of the Smithsonian Institution’s National Museum of Natural History, www.mnh.si.edu/anthro/ humanorigins/ha/laetoli.htm. THE EVOLUTION OF HUMANITY AND CULTURE 2 the BIG questions v What do living nonhuman primates tell us about OUTLINE human culture? Nonhuman Primates and the Roots of Human Culture v Hominin Evolution to Modern What role did culture play Humans during hominin evolution? Critical Thinking: What Is Really in the Toolbox? v How has modern human Eye on the Environment: Clothing as a Thermal culture changed in the past Adaptation to Cold and Wind 12,000 years? The Neolithic Revolution and the Emergence of Cities and States Lessons Applied: Archaeology Findings Increase Food Production in Bolivia 33 Substantial scientific evidence indicates that modern hu- closest to humans and describes how they provide insights into mans have evolved from a shared lineage with primate ances- what the lives of the earliest human ancestors might have been tors between 4 and 8 million years ago. The mid-nineteenth like. It then turns to a description of the main stages in evolu- century was a turning point in European thinking about tion to modern humans. The last section covers the develop- human origins as scientific thinking challenged the biblical ment of settled life, agriculture, and cities and states.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • Craniofacial Morphology of Homo Floresiensis: Description, Taxonomic
    Journal of Human Evolution 61 (2011) 644e682 Contents lists available at SciVerse ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Craniofacial morphology of Homo floresiensis: Description, taxonomic affinities, and evolutionary implication Yousuke Kaifu a,b,*, Hisao Baba a, Thomas Sutikna c, Michael J. Morwood d, Daisuke Kubo b, E. Wahyu Saptomo c, Jatmiko c, Rokhus Due Awe c, Tony Djubiantono c a Department of Anthropology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki Prefecture Japan b Department of Biological Sciences, The University of Tokyo, 3-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan c National Research and Development Centre for Archaeology, Jl. Raya Condet Pejaten No 4, Jakarta 12001, Indonesia d Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia article info abstract Article history: This paper describes in detail the external morphology of LB1/1, the nearly complete and only known Received 5 October 2010 cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Accepted 21 August 2011 Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Prin- cipal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. Keywords: The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the LB1/1 H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is Homo erectus craniometrically different from H. sapiens showing an extremely small overall cranial size, and the Homo habilis Cranium combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded Face oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape.
    [Show full text]