Anatomy of Juravenator Starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy of Juravenator Starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany N. Jb. Geol. Paläont. Abh. 258/3, 257–296 Article Stuttgart, December 2010 Anatomy of Juravenator starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany Luis M. Chiappe, Los Angeles and Ursula B. Göhlich, Vienna With 26 figures CHIAPPE, L. M. & GÖHLICH, U. B. (2011): Anatomy of Juravenator starki (Theropoda: Coelurosauria) from the Late Jurassic of Germany. – N. Jb. Geol. Paläont. Abh., 258: 257–296; Stuttgart. Abstract: We provide a detailed study of the morphology of the holotype of Juravenator starki from the Late Jurassic of the Solnhofen area of southern Germany. The incompletely ossified surface of multiple bones and lack of se veral skeletal fusions indicate that Juravenator starki is based on an immature specimen. Nonetheless, numerous unique mor phologies and bone proportions distinguish this taxon from Compsognathus longipes, the only previously named non-avian theropod dinosaur from the Late Jurassic of the Solnhofen Archipelago. Yet, its skeletal anatomy is most similar to that of Compsognathus and other theropods that have often been regarded as closely related to the latter – sometimes within a monophyletic Compsognathidae. Juravenator is characterized by having a small size (~ 0.75-meter-long in the holotype) with fe w maxillary teeth, lack of a premaxillar y-maxillary diastema, an antorbital fenestra subequal in length to orbit, an elongate scapula that is narrowest at its neck, a propor tionally short humerus and high and abr uptly tapered manual cla ws, and bo w- like zygapophysial articulations in the mid-caudal v ertebrae. Portions of the epider mis preserved mainly along the tail provide the only glimpse of the mor phology of the skin of basal coelurosaurs, and structures newly revealed under UV light hint at the possibility of f ilamentous integumentary structures – akin to those interpreted as proto-feathers in other basal coelurosaurs – also covering the body of this dinosaur. The discovery of Juravenator has provided evidence of morphologies – from details of the skull to the epider mis – that are poorl y known in other theropods inter preted as at or near the base of Coelurosauria, and thus contributes signif icantly to our understanding of the evolutionary history of this clade. The exquisitely preserved holotipic skeleton adds significantly to the meager record of small-bodied Late Jurassic theropods. Key words: Juravenator, Theropoda, anatomy, taphonomy, preservation, Jurassic, Solnhofen Lime- stones. 1. Introduction the evolutionary debate of the 19th century (DESMOND 1982; OSTROM 1978; CHIAPPE 2007), the rather un - Small non-avian theropods of Late Jurassic age are specialized morphology of “compsognathids” (Comp- rare worldwide (WEISHAMPEL et al. 2004). Onl y a sognathus and a series of alle ged Late Jurassic-Early handful of them e xist in Europe and until recentl y, Cretaceous relatives – CURRIE & CHEN 2001; HOLTZ these dinosaurs were best represented b y two incom- et al. 2004; H WANG et al. 2004; N AISH et al. 2004; J I plete skeletons of Compsognathus longipes (WAGNER et al. 2007b; G ISHLICK & GAUTHIER 2007) has com- 1861). Despite the historical signif icance of Comp - plicated interpretations of this g roup’s monophyly. In sognathus, the discovery of which played a key role in this paper, “compsognathids” are used without an y © 2010 E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, Germany www.schweizerbart.de DOI: 10.1127/0077-7749/2010/0125 0077-7749/2010/0125 $ 10.00.
Recommended publications
  • Evaluating the Ecology of Spinosaurus: Shoreline Generalist Or Aquatic Pursuit Specialist?
    Palaeontologia Electronica palaeo-electronica.org Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist? David W.E. Hone and Thomas R. Holtz, Jr. ABSTRACT The giant theropod Spinosaurus was an unusual animal and highly derived in many ways, and interpretations of its ecology remain controversial. Recent papers have added considerable knowledge of the anatomy of the genus with the discovery of a new and much more complete specimen, but this has also brought new and dramatic interpretations of its ecology as a highly specialised semi-aquatic animal that actively pursued aquatic prey. Here we assess the arguments about the functional morphology of this animal and the available data on its ecology and possible habits in the light of these new finds. We conclude that based on the available data, the degree of adapta- tions for aquatic life are questionable, other interpretations for the tail fin and other fea- tures are supported (e.g., socio-sexual signalling), and the pursuit predation hypothesis for Spinosaurus as a “highly specialized aquatic predator” is not supported. In contrast, a ‘wading’ model for an animal that predominantly fished from shorelines or within shallow waters is not contradicted by any line of evidence and is well supported. Spinosaurus almost certainly fed primarily from the water and may have swum, but there is no evidence that it was a specialised aquatic pursuit predator. David W.E. Hone. Queen Mary University of London, Mile End Road, London, E1 4NS, UK. [email protected] Thomas R. Holtz, Jr. Department of Geology, University of Maryland, College Park, Maryland 20742 USA and Department of Paleobiology, National Museum of Natural History, Washington, DC 20560 USA.
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Hierarchical Clustering Analysis Suppcdr.Cdr
    Distance Hierarchical joiningclustering 3.0 2.5 2.0 1.5 1.0 0.5 Sinosauropteryx Caudipteryx Eoraptor Compsognathus Compsognathus Compsognathus Compsognathus Megaraptora basal Coelurosauria Noasauridae Neotheropoda non-averostran T non-tyrannosaurid Dromaeosauridae basalmost Theropoda Oviraptorosauria Compsognathidae Therizinosauria T A yrannosauroidea Compsognathus roodontidae ves Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Compsognathus Richardoestesia Scipionyx Buitreraptor Compsognathus Troodon Compsognathus Compsognathus Compsognathus Juravenator Sinosauropteryx Juravenator Juravenator Sinosauropteryx Incisivosaurus Coelophysis Scipionyx Richardoestesia Compsognathus Compsognathus Compsognathus Richardoestesia Richardoestesia Richardoestesia Richardoestesia Compsognathus Richardoestesia Juravenator Richardoestesia Richardoestesia Richardoestesia Richardoestesia Buitreraptor Saurornitholestes Ichthyornis Saurornitholestes Ichthyornis Richardoestesia Richardoestesia Richardoestesia Richardoestesia Richardoestesia Juravenator Scipionyx Buitreraptor Coelophysis Richardoestesia Coelophysis Richardoestesia Richardoestesia Richardoestesia Richardoestesia Coelophysis Richardoestesia Bambiraptor Richardoestesia Richardoestesia Velociraptor Juravenator Saurornitholestes Saurornitholestes Buitreraptor Coelophysis Coelophysis Ornitholestes Richardoestesia Richardoestesia Juravenator Saurornitholestes Velociraptor Saurornitholestes
    [Show full text]
  • Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
    Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A.
    [Show full text]
  • Redalyc.Note on the Paleobiogeography Of
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil SALES, MARCOS A.F.; CASCON, PAULO; SCHULTZ, CESAR L. Note on the paleobiogeography of Compsognathidae (Dinosauria: Theropoda) and its paleoecological implications Anais da Academia Brasileira de Ciências, vol. 86, núm. 1, enero-marzo, 2014, pp. 127-134 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32730090007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2014) 86(1): 127-134 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-37652013100412 www.scielo.br/aabc Note on the paleobiogeography of Compsognathidae (Dinosauria: Theropoda) and its paleoecological implications MARCOS A.F. SALES1, PAULO CASCON2 and CESAR L. Schultz3 1Programa de Pós-Graduação em Geociências, Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brasil 2Departamento de Biologia, Universidade Federal do Ceará, Av. Mister Hull, Pici, 60455-760 Fortaleza, CE, Brasil 3Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brasil Manuscript received on april 16, 2012; accepted for publication on June 4, 2013 ABSTRACT The paleobiogeography of the theropod clade Compsognathidae is here reaccessed in order to test the hypothesis of this taxon being adapted specifically to inhabit semi-arid environments.
    [Show full text]
  • The Dinosaur Field Guide Supplement
    The Dinosaur Field Guide Supplement September 2010 – December 2014 By, Zachary Perry (ZoPteryx) Page 1 Disclaimer: This supplement is intended to be a companion for Gregory S. Paul’s impressive work The Princeton Field Guide to Dinosaurs, and as such, exhibits some similarities in format, text, and taxonomy. This was done solely for reasons of aesthetics and consistency between his book and this supplement. The text and art are not necessarily reflections of the ideals and/or theories of Gregory S. Paul. The author of this supplement was limited to using information that was freely available from public sources, and so more information may be known about a given species then is written or illustrated here. Should this information become freely available, it will be included in future supplements. For genera that have been split from preexisting genera, or when new information about a genus has been discovered, only minimal text is included along with the page number of the corresponding entry in The Princeton Field Guide to Dinosaurs. Genera described solely from inadequate remains (teeth, claws, bone fragments, etc.) are not included, unless the remains are highly distinct and cannot clearly be placed into any other known genera; this includes some genera that were not included in Gregory S. Paul’s work, despite being discovered prior to its publication. All artists are given full credit for their work in the form of their last name, or lacking this, their username, below their work. Modifications have been made to some skeletal restorations for aesthetic reasons, but none affecting the skeleton itself.
    [Show full text]
  • Skeletal Completeness of the Non‐Avian Theropod Dinosaur Fossil
    University of Birmingham Skeletal completeness of the non-avian theropod dinosaur fossil record Cashmore, Daniel; Butler, Richard DOI: 10.1111/pala.12436 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Cashmore, D & Butler, R 2019, 'Skeletal completeness of the non-avian theropod dinosaur fossil record', Palaeontology, vol. 62, no. 6, pp. 951-981. https://doi.org/10.1111/pala.12436 Link to publication on Research at Birmingham portal Publisher Rights Statement: Cashmore, D & Butler, R (2019), 'Skeletal completeness of the non-avian theropod dinosaur fossil record', Palaeontology, vol. 62, no. 6, pp. 951-981. © 2019 The Authors 2019. https://doi.org/10.1111/pala.12436 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • A New Basal Ornithopod Dinosaur from the Lower Cretaceous of China
    A new basal ornithopod dinosaur from the Lower Cretaceous of China Yuqing Yang1,2,3, Wenhao Wu4,5, Paul-Emile Dieudonné6 and Pascal Godefroit7 1 College of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning, China 2 College of Paleontology, Shenyang Normal University, Shenyang, Liaoning, China 3 Key Laboratory for Evolution of Past Life and Change of Environment, Province of Liaoning, Shenyang Normal University, Shenyang, Liaoning, China 4 Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education, Jilin University, Changchun, Jilin, China 5 Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, Jilin, China 6 Instituto de Investigación en Paleobiología y Geología, CONICET, Universidad Nacional de Río Negro, Rio Negro, Argentina 7 Directorate ‘Earth and History of Life’, Royal Belgian Institute of Natural Sciences, Brussels, Belgium ABSTRACT A new basal ornithopod dinosaur, based on two nearly complete articulated skeletons, is reported from the Lujiatun Beds (Yixian Fm, Lower Cretaceous) of western Liaoning Province (China). Some of the diagnostic features of Changmiania liaoningensis nov. gen., nov. sp. are tentatively interpreted as adaptations to a fossorial behavior, including: fused premaxillae; nasal laterally expanded, overhanging the maxilla; shortened neck formed by only six cervical vertebrae; neural spines of the sacral vertebrae completely fused together, forming a craniocaudally-elongated continuous bar; fused scapulocoracoid with prominent
    [Show full text]
  • Postcranial Skeletal Anatomy of the Holotype and Referred
    Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguı´a and Agnolı´n 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia Federico A. Gianechini1, Peter J. Makovicky2,*, Sebastia´n Apesteguı´a3,* and Ignacio Cerda4,* 1 Instituto Multidisciplinario de Investigaciones Biolo´gicas (IMIBIO-SL), CONICET— Universidad Nacional de San Luis, San Luis, Argentina 2 Section of Earth Sciences, Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA 3 CONICET, Fundacio´n de Historia Natural ‘Fe´lix de Azara’, CEBBAD, Universidad Maimo´nides, Buenos Aires, Argentina 4 CONICET, Instituto de Investigacio´n en Paleobiologı´a y Geologı´a, Universidad Nacional de Rı´o Negro, General Roca, Rı´o Negro, Argentina * These authors contributed equally to this work. ABSTRACT Here we provide a detailed description of the postcranial skeleton of the holotype and referred specimens of Buitreraptor gonzalezorum. This taxon was recovered as an unenlagiine dromaeosaurid in several recent phylogenetic studies and is the best represented Gondwanan dromaeosaurid discovered to date. It was preliminarily described in a brief article, but a detailed account of its osteology is emerging in recent works. The holotype is the most complete specimen yet found, so an exhaustive description of it provides much valuable anatomical information. The Submitted 18 January 2018 holotype and referred specimens preserve the axial skeleton, pectoral and pelvic Accepted 9 March 2018 girdles, and both fore- and hindlimbs. Diagnostic postcranial characters of this taxon Published 26 March 2018 include: anterior cervical centra exceeding the posterior limit of neural arch; eighth Corresponding author and ninth cervical vertebral centra with lateroventral tubercles; pneumatic foramina Federico A.
    [Show full text]
  • Haplocheirus Sollers Choiniere Et Al., 2010 (Theropoda: Alvarezsauroidea)
    AMERICAN MUSEUM NOVITATES Number 3816, 44 pp. October 22, 2014 Cranial osteology of Haplocheirus sollers Choiniere et al., 2010 (Theropoda: Alvarezsauroidea) JONAH N. CHOINIERE,1,2,3 JAMES M. CLARK,2 MARK A. NORELL,3 AND XING XU4 ABSTRacT The basalmost alvarezsauroid Haplocheirus sollers is known from a single specimen col- lected in Upper Jurassic (Oxfordian) beds of the Shishugou Formation in northwestern China. Haplocheirus provides important data about the plesiomorphic morphology of the theropod group Alvarezsauroidea, whose derived members possess numerous skeletal autapomorphies. We present here a detailed description of the cranial anatomy of Haplocheirus. These data are important for understanding cranial evolution in Alvarezsauroidea because other basal mem- bers of the clade lack cranial material entirely and because derived parvicursorine alvarezsau- roids have cranial features shared exclusively with members of Avialae that have been interpreted as synapomorphies in some analyses. We discuss the implications of this anatomy for cranial evolution within Alvarezsauroidea and at the base of Maniraptora. INTRODUCTION Alvarezsauroidea is a clade of theropod dinosaurs whose derived members possess remarkably birdlike features, including a lightly built, kinetic skull, several vertebral modi- fications, a keeled sternum, a fused carpometacarpus, a fully retroverted pubis and ischium 1 Evolutionary Studies Institute, University of the Witwatersrand; DST/NRF Centre of Excellence in Palaeo- sciences, University of the Witwatersrand. 2 Department of Biological Sciences, George Washington University. 3 Division of Paleontology, American Museum of Natural History. 4 Key Laboratory of Vertebrate Evolution and Human Origins, Institute for Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences. Copyright © American Museum of Natural History 2014 ISSN 0003-0082 2 AMERICAN MUSEUM NOVITATES NO.
    [Show full text]
  • Premaxilla Bifurcating Posteriorly at Its Contact with the Nasal; Lateral Surface of Premaxilla with Deep Groove Leading from Subnarial Foramen to A
    Edinburgh Research Explorer The skull of Monolophosaurus jiangi (Dinosauria Citation for published version: Brusatte, SL, Benson, RBJ, Currie, PJ & Xijin, Z 2010, 'The skull of Monolophosaurus jiangi (Dinosauria: Theropoda) and its implications for early theropod phylogeny and evolution', Zoological Journal of the Linnean Society, vol. 158, no. 3, pp. 573-607. https://doi.org/10.1111/j.1096-3642.2009.00563.x Digital Object Identifier (DOI): 10.1111/j.1096-3642.2009.00563.x Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Zoological Journal of the Linnean Society Publisher Rights Statement: Final version was published by Wiley-Blackwell and is available at www.interscience.wiley.com. Copyright of Linnean Society of London (2010) General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Post-Print Version. Final publication copyright of Linnean Society of London (2010). Cite As: Brusatte, SL, Benson, RBJ, Currie, PJ & Xijin, Z 2010, 'The skull of Monolophosaurus jiangi (Dinosauria: Theropoda) and its implications for early theropod phylogeny and evolution' Zoological Journal of the Linnean Society, vol 158, no.
    [Show full text]
  • New Theropod Dinosaur Teeth from the Middle Jurassic of the Isle of Skye, Scotland
    Edinburgh Research Explorer New theropod dinosaur teeth from the Middle Jurassic of the Isle of Skye, Scotland Citation for published version: Young, CME, Hendrickx, C, Challands, T, Foffa, D, Ross, DA, Butler, I & Brusatte, S 2019, 'New theropod dinosaur teeth from the Middle Jurassic of the Isle of Skye, Scotland', Scottish Journal of Geology. https://doi.org/10.1144/sjg2018-020 Digital Object Identifier (DOI): 10.1144/sjg2018-020 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Scottish Journal of Geology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 1 2 New theropod dinosaur teeth from the Middle Jurassic of the Isle of Skye, Scotland 3 4 Chloe M. E. Young1, Christophe Hendrickx2, Thomas J. Challands1, Davide Foffa1, Dugald 5 A. Ross3, Ian B. Butler1, and Stephen L. Brusatte1,4* 6 7 1School of Geosciences, University of Edinburgh,
    [Show full text]