International Journal of Molecular Sciences Article Pax3 and Pax7 Exhibit Distinct and Overlapping Functions in Marking Muscle Satellite Cells and Muscle Repair in a Marine Teleost, Sebastes schlegelii Mengya Wang 1,2, Weihao Song 1 , Chaofan Jin 1, Kejia Huang 1, Qianwen Yu 1, Jie Qi 1,2, Quanqi Zhang 1,2 and Yan He 1,2,* 1 MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
[email protected] (M.W.);
[email protected] (W.S.);
[email protected] (C.J.);
[email protected] (K.H.);
[email protected] (Q.Y.);
[email protected] (J.Q.);
[email protected] (Q.Z.) 2 Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China * Correspondence:
[email protected] Abstract: Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we Citation: Wang, M.; Song, W.; Jin, C.; constructed a muscle injury model to explore the function of these four genes during muscle repair. Huang, K.; Yu, Q.; Qi, J.; Zhang, Q.; Hematoxylin–eosin (H–E) of injured muscle sections showed new-formed myofibers occurred at He, Y.