Pax3 and Pax7 Exhibit Distinct and Overlapping Functions in Marking Muscle Satellite Cells and Muscle Repair in a Marine Teleost, Sebastes Schlegelii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer
Published OnlineFirst October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 RESEARCH ARTICLE The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer Jennifer L. Bishop1, Daksh Thaper1,2, Sepideh Vahid1,2, Alastair Davies1, Kirsi Ketola1, Hidetoshi Kuruma1, Randy Jama1, Ka Mun Nip1,2, Arkhjamil Angeles1, Fraser Johnson1, Alexander W. Wyatt1,2, Ladan Fazli1,2, Martin E. Gleave1,2, Dong Lin1, Mark A. Rubin3, Colin C. Collins1,2, Yuzhuo Wang1,2, Himisha Beltran3, and Amina Zoubeidi1,2 ABSTRACT Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor–resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo. Mecha- nistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with clas- sic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE: Understanding the contribution of the AR to the emergence of highly lethal, drug- resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design. -
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Detailed Review Paper on Retinoid Pathway Signalling
1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process. -
A Population-Based Study of Effects of Genetic Loci on Orofacial Clefts
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Dent Res Manuscript Author . Author manuscript; Manuscript Author available in PMC 2017 October 01. Published in final edited form as: J Dent Res. 2017 October ; 96(11): 1322–1329. doi:10.1177/0022034517716914. A Population-Based Study of Effects of Genetic Loci on Orofacial Clefts L.M. Moreno Uribe1, T. Fomina2, R.G. Munger3, P.A. Romitti4, M.M. Jenkins5, H.K. Gjessing2,6, M. Gjerdevik2,6, K. Christensen7, A.J. Wilcox8, J.C. Murray9, R.T. Lie2,6,*, and G.L. Wehby10,* 1Department of Orthodontics and Dows Institute, College of Dentistry, University of Iowa, Iowa City, IA, USA 2Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway 3Department of Nutrition and Food Sciences, Utah State University, Logan, UT, USA 4Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA 5National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA 6Norwegian Institute of Public Health, Bergen and Oslo, Norway 7Department of Public Health, University of Southern Denmark; Department of Clinical Genetics and Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark 8Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA 9Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA 10Departments of Health Management and Policy, Economics, and Preventive and Community Dentistry, and Public Policy Center, University of Iowa, Iowa City, IA, USA Abstract Prior genome-wide association studies for oral clefts have focused on clinic-based samples with unclear generalizability. -
PAX3–FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain
Published OnlineFirst April 26, 2017; DOI: 10.1158/2159-8290.CD-16-1297 RESEARCH ARTICLE PAX3–FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability Berkley E. Gryder 1 , Marielle E. Yohe 1 , 2 , Hsien-Chao Chou 1 , Xiaohu Zhang 3 , Joana Marques 4 , Marco Wachtel4 , Beat Schaefer 4 , Nirmalya Sen 1 , Young Song 1 , Alberto Gualtieri 5 , Silvia Pomella 5 , Rossella Rota5 , Abigail Cleveland 1 , Xinyu Wen 1 , Sivasish Sindiri 1 , Jun S. Wei 1 , Frederic G. Barr 6 , Sudipto Das7 , Thorkell Andresson 7 , Rajarshi Guha 3 , Madhu Lal-Nag 3 , Marc Ferrer 3 , Jack F. Shern 1 , 2 , Keji Zhao8 , Craig J. Thomas 3 , and Javed Khan 1 Downloaded from cancerdiscovery.aacrjournals.org on September 29, 2021. © 2017 American Association for Cancer Research. 16-CD-16-1297_p884-899.indd 884 7/20/17 2:21 PM Published OnlineFirst April 26, 2017; DOI: 10.1158/2159-8290.CD-16-1297 ABSTRACT Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and ado- lescent young adults, driven primarily by the chimeric transcription factor PAX3–FOXO1. The mechanisms by which PAX3–FOXO1 dysregulates chromatin are unknown. We fi nd PAX3–FOXO1 repro- grams the cis -regulatory landscape by inducing de novo super enhancers. PAX3–FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3–FOXO1-occupied super enhancers. -
PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1
Published OnlineFirst November 18, 2016; DOI: 10.1158/0008-5472.CAN-16-1546 Cancer Therapeutics, Targets, and Chemical Biology Research PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric PAX3-FOXO1A. Mechanistic investigations revealed a requirement disease driven by expression of the oncogenic fusion gene PAX3- for the NR4A1/Sp4 complex to bind GC-rich promoter regions FOXO1A. In this study, we report overexpression of the nuclear to elevate transcription of the PAX3-FOXO1A gene. In parallel, receptor NR4A1 in rhabdomyosarcomas that is sufficient to NR4A1 also regulated expression of b1-integrin, which with PAX3- drive high expression of PAX3-FOXO1A there. RNAi-mediated FOXO1A, contributed to tumor cell migration that was blocked by silencing of NR4A1 decreased expression of PAX3-FOXO1A and C-DIM/NR4A1 antagonists. Taken together, our results provide a its downstream effector genes. Similarly, cell treatment with the preclinical rationale for the use of NR4A1 small-molecule antago- NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p- nists to treat ARMS and other rhabdomyosarcomas driven by hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Cancer Res; 77(3); 1–10. Ó2016 AACR. Introduction activity for NR4A1. In contrast, NR4A1 exhibits tumor promoter activity (6, 7) in solid tumors. NR4A1 is also overexpressed in Rhabdomyosarcoma is the most common soft-tissue sarco- tumors from patients with breast, lung, pancreatic, colon, and ma that is primarily observed in children and adolescents and ovarian cancer and is a negative prognostic factor for patients with accounts for 50% of all pediatric cancers and 50% of soft-tissue breast, lung, and ovarian cancer (9–15). -
Differentiation of the Human PAX7
© 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev187344. doi:10.1242/dev.187344 HUMAN DEVELOPMENT TECHNIQUES AND RESOURCES ARTICLE Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro Ziad Al Tanoury1,2,3, Jyoti Rao2,3, Olivier Tassy1,Bénédicte Gobert1,4, Svetlana Gapon2, Jean-Marie Garnier1, Erica Wagner2, Aurore Hick4, Arielle Hall5, Emanuela Gussoni5 and Olivier Pourquié1,2,3,6,* ABSTRACT SC derive from the paraxial mesoderm, the embryonic tissue that Satellite cells (SC) are muscle stem cells that can regenerate adult forms the vertebral column and skeletal muscles (Chal and Pourquié, muscles upon injury. Most SC originate from PAX7+ myogenic 2017; Gros et al., 2005; Hutcheson et al., 2009; Kassar-Duchossoy precursors set aside during development. Although myogenesis has et al., 2005; Lepper and Fan, 2010; Relaix et al., 2005; Schienda et al., + been studied in mouse and chicken embryos, little is known about 2006). Pax3 myogenic precursors arise from the dorsal epithelial + human muscle development. Here, we report the generation of human compartment of the somite called the dermomyotome. Pax3 cells of induced pluripotent stem cell (iPSC) reporter lines in which fluorescent the dermomyotome lips activate Myf5, then downregulate Pax3 and proteins have been introduced into the PAX7 and MYOG loci. We use delaminate and differentiate into elongated post-mitotic myocytes single cell RNA sequencing to analyze the developmental trajectory of expressing myogenin (Myog) to form the first embryonic muscles + the iPSC-derived PAX7+ myogenic precursors. We show that the called myotomes (Chal and Pourquié, 2017). At the same time, Pax3 PAX7+ cells generated in culture can produce myofibers and self- myogenic precursors delaminate from the lateral edge of the renew in vitro and in vivo. -
PAX7 Balances the Cell Cycle Progression Via Regulating Expression of Dnmt3b and Apobec2 in Differentiating Pscs
cells Article PAX7 Balances the Cell Cycle Progression via Regulating Expression of Dnmt3b and Apobec2 in Differentiating PSCs Anita Florkowska , Igor Meszka, Joanna Nowacka, Monika Granica , Zuzanna Jablonska, Magdalena Zawada, Lukasz Truszkowski , Maria A. Ciemerych and Iwona Grabowska * Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; a.fl[email protected] (A.F.); [email protected] (I.M.); [email protected] (J.N.); [email protected] (M.G.); [email protected] (Z.J.); [email protected] (M.Z.); [email protected] (L.T.); [email protected] (M.A.C.) * Correspondence: [email protected] Abstract: PAX7 transcription factor plays a crucial role in embryonic myogenesis and in adult muscles in which it secures proper function of satellite cells, including regulation of their self renewal. PAX7 downregulation is necessary for the myogenic differentiation of satellite cells induced after muscle damage, what is prerequisite step for regeneration. Using differentiating pluripotent stem cells we documented that the absence of functional PAX7 facilitates proliferation. Such action is executed by the modulation of the expression of two proteins involved in the DNA methylation, i.e., Dnmt3b and Apobec2. Increase in Dnmt3b expression led to the downregulation of the CDK inhibitors and Citation: Florkowska, A.; Meszka, I.; facilitated cell cycle progression. Changes in Apobec2 expression, on the other hand, differently Nowacka, J.; Granica, M.; Jablonska, impacted proliferation/differentiation balance, depending on the experimental model used. Z.; Zawada, M.; Truszkowski, L.; Ciemerych, M.A.; Grabowska, I. -
Southward Range Extension of the Goldeye Rockfish, Sebastes
Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al. -
PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1
Published OnlineFirst November 18, 2016; DOI: 10.1158/0008-5472.CAN-16-1546 Cancer Therapeutics, Targets, and Chemical Biology Research PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1 Alexandra Lacey1, Aline Rodrigues-Hoffman2, and Stephen Safe1 Abstract Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric PAX3-FOXO1A. Mechanistic investigations revealed a requirement disease driven by expression of the oncogenic fusion gene PAX3- for the NR4A1/Sp4 complex to bind GC-rich promoter regions FOXO1A. In this study, we report overexpression of the nuclear to elevate transcription of the PAX3-FOXO1A gene. In parallel, receptor NR4A1 in rhabdomyosarcomas that is sufficient to NR4A1 also regulated expression of b1-integrin, which with PAX3- drive high expression of PAX3-FOXO1A there. RNAi-mediated FOXO1A, contributed to tumor cell migration that was blocked by silencing of NR4A1 decreased expression of PAX3-FOXO1A and C-DIM/NR4A1 antagonists. Taken together, our results provide a its downstream effector genes. Similarly, cell treatment with the preclinical rationale for the use of NR4A1 small-molecule antago- NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p- nists to treat ARMS and other rhabdomyosarcomas driven by hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Cancer Res; 77(3); 1–10. Ó2016 AACR. Introduction activity for NR4A1. In contrast, NR4A1 exhibits tumor promoter activity (6, 7) in solid tumors. NR4A1 is also overexpressed in Rhabdomyosarcoma is the most common soft-tissue sarco- tumors from patients with breast, lung, pancreatic, colon, and ma that is primarily observed in children and adolescents and ovarian cancer and is a negative prognostic factor for patients with accounts for 50% of all pediatric cancers and 50% of soft-tissue breast, lung, and ovarian cancer (9–15). -
In Mediating Transcriptional Activity of Androgen Receptor Splice Variants
ROLE OF TRANSCRIPTIONAL ACTIVATION UNIT 5 (TAU5) IN MEDIATING TRANSCRIPTIONAL ACTIVITY OF ANDROGEN RECEPTOR SPLICE VARIANTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SARITA KUMARI MUTHA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE SCOTT DEHM & JIM McCARTHY DECEMBER 2012 © Sarita Kumari Mutha 2012 ACKNOWLEDGEMENTS I would like to thank the Dehm Lab: Scott Dehm, Yingming Li, Siu Chiu Chan, and Luke Brand for the support, discussions, journal clubs, and training. I would like to thank MCBD&G faculty Kathleen Conklin and Meg Titus for their support. Finally, I would also to acknowledge my committee Scott Dehm, Jim McCarthy, and Kaylee Schwertfeger for their time and support. i DEDICATION This thesis is dedicated to my mentor and advisor Scott Dehm. This work would not have been possible without his support. I am very grateful for my time under his mentorship and the opportunity to learn from him. ii ABSTRACT The standard treatment for advanced prostate cancer is chemical castration, which inhibits the activity of the androgen receptor (AR). Eventually, prostate cancer reemerges with a castration-resistant phenotype (CRPC) but still depends on AR signaling. One mechanism of AR activity in CRPC is the synthesis of AR splice variants, which lack the ligand binding domain. These splice variants function as constitutively active transcription factors that promote expression of endogenous AR target genes and support androgen independent prostate cancer cell growth. Previous work has shown transcriptional activation unit 5 (TAU5) is necessary for ligand independent activity of the full length AR in low or no androgen conditions and that this activation is mediated by the WHTLF motif. -
An OTX2-PAX3 Signaling Axis Regulates Group 3 Medulloblastoma Cell Fate
ARTICLE https://doi.org/10.1038/s41467-020-17357-4 OPEN An OTX2-PAX3 signaling axis regulates Group 3 medulloblastoma cell fate Jamie Zagozewski1, Ghazaleh M. Shahriary 1, Ludivine Coudière Morrison1, Olivier Saulnier 2,3, Margaret Stromecki1, Agnes Fresnoza4, Gareth Palidwor5, Christopher J. Porter 5, Antoine Forget6,7, Olivier Ayrault 6,7, Cynthia Hawkins2,8,9, Jennifer A. Chan10, Maria C. Vladoiu2,3,9, Lakshmikirupa Sundaresan2,3, Janilyn Arsenio11,12, Michael D. Taylor 2,3,9,13, Vijay Ramaswamy 2,3,14,15 & ✉ Tamra E. Werbowetski-Ogilvie 1 1234567890():,; OTX2 is a potent oncogene that promotes tumor growth in Group 3 medulloblastoma. However, the mechanisms by which OTX2 represses neural differentiation are not well characterized. Here, we perform extensive multiomic analyses to identify an OTX2 regulatory network that controls Group 3 medulloblastoma cell fate. OTX2 silencing modulates the repressive chromatin landscape, decreases levels of PRC2 complex genes and increases the expression of neurodevelopmental transcription factors including PAX3 and PAX6. Expression of PAX3 and PAX6 is significantly lower in Group 3 medulloblastoma patients and is cor- related with reduced survival, yet only PAX3 inhibits self-renewal in vitro and increases survival in vivo. Single cell RNA sequencing of Group 3 medulloblastoma tumorspheres demonstrates expression of an undifferentiated progenitor program observed in primary tumors and characterized by translation/elongation factor genes. Identification of mTORC1 signaling as a downstream effector of OTX2-PAX3 reveals roles for protein synthesis pathways in regulating Group 3 medulloblastoma pathogenesis. 1 Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada. 2 The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, ON, Canada.