Functional Study of Two Biochemically Unusual Mutations in GUCY2D Leber Congenital Amaurosis Expressed Via Adenoassociated Virus Vector in Mouse Retinas

Total Page:16

File Type:pdf, Size:1020Kb

Functional Study of Two Biochemically Unusual Mutations in GUCY2D Leber Congenital Amaurosis Expressed Via Adenoassociated Virus Vector in Mouse Retinas Molecular Vision 2016; 22:1342-1351 <http://www.molvis.org/molvis/v22/1342> © 2016 Molecular Vision Received 31 August 2016 | Accepted 8 November 2016 | Published 10 November 2016 Functional study of two biochemically unusual mutations in GUCY2D Leber congenital amaurosis expressed via adenoassociated virus vector in mouse retinas Sanford L. Boye,1 Elena V. Olshevskaya,2 Igor V. Peshenko,2 K. Tyler McCullough,1 Shannon E. Boye,1 Alexander M. Dizhoor2 (The first three authors contributed equally to the study.) 1Department of Ophthalmology, University of Florida, Gainesville, FL; 2Pennsylvania College of Optometry, Salus University, Elkins Park, PA Purpose: To test, in living photoreceptors, two mutations, S248W and R1091x, in the GUCY2D gene linked to Leber congenital amaurosis 1 (LCA1) that fail to inactivate the catalytic activity of a heterologously expressed retinal mem- brane guanylyl cyclase 1 (RetGC1). Methods: GUC2YD cDNA constructs coding for wild-type human (hWT), R1091x, and S248W GUCY2D under the control of the human rhodopsin kinase promoter were expressed in Gucy2e−/−Gucy2f−/− knockout (GCdKO) mouse retinas, which lack endogenous RetGC activity. The constructs were delivered via subretinally injected adenoassociated virus (AAV) vector in one eye, leaving the opposite eye as the non-injected negative control. After testing with electroretinog- raphy (ERG), the retinas extracted from the AAV-treated and control eyes were used in guanylyl cyclase activity assays, immunoblotting, and anti-RetGC1 immunofluorescence staining. Results: Cyclase activity in retinas treated with either hWT or R1091x GUCY2D transgenes was similar but was un- detectable in the S248W GUCY2D-treated retinas, which starkly contrasts their relative activities when heterologously expressed in human embryonic kidney (HEK293) cells. Rod and cone ERGs, absent in GCdKO, appeared in the hWT and R1091x GUCY2D-injected eyes, while the S248W mutant failed to restore scotopic ERG response and enabled only rudimentary photopic ERG response. The hWT and R1091x GUCY2D immunofluorescence was robust in the rod and cone outer segments, whereas the S248W was detectable only in the sparse cone outer segments and sporadic photorecep- tor cell bodies. Robust RetGC1 expression was detected with immunoblotting in the hWT and R1091x-treated retinas but was marginal at best in the S248W GUCY2D retinas, despite the confirmed presence of the S248W GUCY2D transcripts. Conclusions: The phenotype of S248W GUCY2D in living retinas did not correlate with the previously described normal biochemical activity of this mutant when heterologously expressed in non-photoreceptor cell culture. This result suggests that the S248W mutation contributes to LCA1 by hampering the expression, processing, and/or cellular transport of GUCY2D, rather than its enzymatic properties. In contrast, the effective restoration of rod and cone function by R1091x GUCY2D is paradoxical and does not explain the severe loss of vision typical for LCA1 associated with that mutant allele. The GUCY2D gene (Gene ID: 3000; OMIM 600179) RetGC2 (GUCY2F) [5,6], the former catalyzes most of the codes for the human retinal membrane guanylyl cyclase 1 cGMP production in mammalian photoreceptors [7,8]. Note (RetGC1) isozyme and is one of the genes most frequently that the RetGC1 ortholog in mice is coded by the Gucy2e associated with the early onset, inherited recessive blindness, gene [6]; therefore, only the human RetGC1 will be further Leber congenital amaurosis type 1 (LCA1) [1-3]. The acute referred to as GUCY2D (wherever the difference in gene- loss of vision in patients with GUCY2D LCA1 results not based nomenclature between species can cause confusion, from the severe degeneration of rods and cones [3] but from we use the biochemical names, RetGC1 and RetGC2). cGMP the inefficient production in the diseased photoreceptors synthesis becomes decelerated in the dark and accelerated in of the second messenger in phototransduction, cyclic GMP the light by guanylyl cyclase activating proteins (GCAPs) [9]. (cGMP) [4]. Of the two existing retinal membrane guanylyl These proteins are Ca2+-sensor proteins that switch between cyclase isozymes, RetGC1 (GUCY2D in humans) and their Ca2+- and the Mg2+-bound states following the respective increase or decrease of Ca2+ influx through the cGMP gated channels between dark and light [10]. Another photoreceptor Correspondence to: A.M. Dizhoor, Pennsylvania College of Optometry, Research, S-416, Salus University, 8360 Old York Road, protein, retinal degeneration 3 (RD3) [11,12], reduces RetGC1 Elkins Park, PA, 19027; Phone: +1 215-780-1468; FAX: +1-215-780- activity by competing with GCAPs [13] and is essential for 1464; email: [email protected] the normal production of RetGC1 and its transport to the 1342 Molecular Vision 2016; 22:1342-1351 <http://www.molvis.org/molvis/v22/1342> © 2016 Molecular Vision outer segment [14-16]. We previously showed, in vitro, that in GCdKO photoreceptor outer segments and enabled well- different mutations linked to GUCY2D LCA1 inactivate the detectable rod and cone photoresponses. catalytic activity of RetGC1 and/or suppress its ability to bind GCAPs and RD3 [15,17]. METHODS Rod and cone function can be sustainably restored in Animals: The mouse Gucy2e−/− gene knockout line [23] mice that lack endogenous orthologs of RetGC1 (Gucy2e−/−) that originated from the D. Garbers laboratory (University and RetGC2 (Gucy2f−/−; GCdKO) [18] by delivering functional of Texas) and the Gucy2f−/− gene knockout line [18] that GUCY2D cDNA with adenoassociated viral (AAV) vectors originated from the W. Baehr laboratory (University of [19,20]. Because the majority of patients with GUCY2D LCA1 Utah) were bred into a homozygous (Gucy2e−/−Gucy2f−/−) exhibit preservation of the retinal structure, an opportunity state. All experiments were approved by the University of exists to consider a human gene therapy to rescue vision Florida and Salus University’s Institutional Animal Care and in this disease [3,21]. Among the reported recessive alleles Use Committee and were conducted in accordance with the linked to GUCY2D LCA1 [1-3], the properties of two muta- Association for Research in Vision and Ophthalmology’s tions in GUCY2D in vitro would not explain the virtually (ARVO’s) Statement for the Use of Animals in Ophthalmic complete lack of photoresponses in patients with LCA1 [3]. and Vision Research and with National Institutes of Health These mutations include a missense mutation, Ser248→Trp, regulations. Animals were maintained at the University of in the N-terminal extracellular domain of the enzyme (Figure Florida Health Science Center Animal Care Services Facility 1) [3], and a nonsense mutation, R1091x [1,3], that truncates under a 12 h:12 h light-dark cycle. Food and water were avail- a short C-terminal region, downstream from the catalytic able ad libitum. Animals were shipped to Salus University for domain (Figure 1). Unlike other LCA1-linked GUCY2D terminal assays. mutants shown in vitro [3,17,22] to completely inactivate the AAV vector construction and virus packaging: The original enzymatic activity and regulation of the RetGC1 isozyme vector backbone has been previously described in detail 2+ by Ca and GCAPs, the biochemical properties remained [24]. The recombinant AAV vector plasmids contained substantially preserved in R1091x and remained completely flanking AAV2 inverted terminal repeats, human rhodopsin normal in S248W. kinase promoter, an SV40 splice donor-acceptor site, human By using subretinal delivery via AAV in the present GUCY2D cDNA coding for wild-type or LCA1 mutants, study, we expressed in mouse retinas that lacked endogenous and a bovine growth hormone polyadenylation signal. Wild- cyclase activity variants of human GUCY2D cDNA that type GUCY2D cDNA (hWT) was synthesized de novo and harbor the two mutations linked to LCA1 and tested their contained silent mutations that remove several restriction physiologic effects in living photoreceptors. We found that sites to facilitate molecular cloning. The S248W GUCY2D- S248W GUCY2D, despite its maintenance of full catalytic containing vector plasmid was constructed by replacing the capacity as a recombinant protein in vitro, was completely Eco47III-flanked fragment coding for the S248W mutation. unable to sustain rod function and failed to accumulate in The R1091x GUCY2D vector was constructed by replace- rod outer segments in GCdKO mice. S248W GUCY2D ment of the NarI/SalI fragment containing the TGA codon appeared in only a small number of sparse GCdKO cone outer at position 1091. All constructs were verified with DNA segments, thus mediating barely detectable cone responses. sequencing and packaged using a modified AAV8 capsid In contrast, AAV-mediated R1091x GUCY2D accumulated protein containing a single Tyr733Phe substitution. The Figure 1. Schematic representation of the GUCY2D (RetGC1) primary structure [5,6]. The S248W missense mutation is located in the extra- cellular domain, and the R1091x truncation is located near the C-terminus, downstream of the catalytic domain. LP = leader peptide; ECD = extracellular domain; TM = transmembrane domain; KHD = kinase homology domain; DD = dimerization domain; CAT = catalytic domain. 1343 Molecular Vision 2016; 22:1342-1351 <http://www.molvis.org/molvis/v22/1342> © 2016 Molecular Vision AAV particles were manufactured, purified, and titered GCAP1 were obtained by three rounds of sonication on ice as described elsewhere [25,26]. The titers of the viruses
Recommended publications
  • GUCY2D Cone-Rod Dystrophy-6 Is a ‘Phototransduction Disease’ Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Neurobiology of Disease GUCY2D Cone-Rod Dystrophy-6 is a ‘Phototransduction Disease’ Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1 Shinya Sato1, Igor V. Peshenko2, Elena V. Olshevskaya2, Vladimir J. Kefalov1 and Alexander M. Dizhoor2 1Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110 2Pennsylavania College of Optometry, Salus University, Elkins Park, PA 19027 DOI: 10.1523/JNEUROSCI.2985-17.2018 Received: 17 October 2017 Revised: 19 January 2018 Accepted: 24 January 2018 Published: 12 February 2018 Author contributions: S.S., I.V.P., E.V.O., and A.M.D. performed research; S.S., I.V.P., V.J.K., and A.M.D. analyzed data; V.J.K. and A.M.D. designed research; V.J.K. and A.M.D. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by NIH grants EY11522 (AMD), EY19312, EY25696, and EY27387 (VJK), EY02687 (Washington University, Department of Ophthalmology and Visual Sciences), Pennsylvania Department of Health Formula Grant (AMD) and by Research to Prevent Blindness. Correspondence should be addressed to Co-corresponding authors: Alexander M. Dizhoor, Pennsylvania College of Optometry, Salus University, Elkins Park, PA 19027, [email protected]; Vladimir J. Kefalov, Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, [email protected] Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2985-17.2018 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • IFT88 Transports Gucy2d, a Guanylyl Cyclase, to Maintain Sensory Cilia Function in Drosophila
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.417840; this version posted December 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Werner S et al. Title: IFT88 transports Gucy2d, a guanylyl cyclase, to maintain sensory cilia function in Drosophila Authors: Sascha Werner1,6, Sihem Zitouni1,4, Pilar Okenve-Ramos1, Susana Mendonça1,5, Anje Sporbert2, Christian Spalthoff3, Martin C. Göpfert3, Swadhin Chandra Jana1,6,7, Mónica Bettencourt-Dias1,6,7 Affiliations: 1- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, nº 6, 2780-156 Oeiras, Portugal. 2- Advanced Light Microscopy, Max Delbrück Centrum for Molecular Medicine Berlin in the Helmholtz Association Robert-Rössle-Straße 10, 13125 Berlin, Germany. 3- Department of Cellular Neurobiology, University of Göttingen, 37077 Göttingen, Germany. 4- Present address: Institut de Génétique Humaine (IGH) UMR 9002 CNRS, 141 Rue de la Cardonille, Montpellier, France. 5- Present address: Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal. 6- Correspondence should be addressed to Sascha Werner ([email protected]); Swadhin Chandra Jana ([email protected]); Mónica Bettencourt-Dias ([email protected]) 7- Shared lead authors. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.417840; this version posted December 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Phenotype of Autosomal Dominant Cone–Rod Dystrophy Due to the R838C Mutation of the GUCY2D Gene Encoding Retinal Guanylate
    Eye (2007) 21, 1220–1225 & 2007 Nature Publishing Group All rights reserved 0950-222X/07 $30.00 www.nature.com/eye 1 2 3 3 CASE SERIES Phenotype of M Smith , N Whittock , A Searle , M Croft , C Brewer3 and M Cole1 autosomal dominant cone–rod dystrophy due to the R838C mutation of the GUCY2D gene encoding retinal guanylate cyclase-1 Abstract should therapeutic interventions become available. Aims: To describe the phenotype of members Eye (2007) 21, 1220–1225; doi:10.1038/sj.eye.6702612; of a large Caucasian British family affected by published online 13 October 2006 autosomal dominant cone–rod dystrophy due to an R838C mutation in the guanylate cyclase Keywords: cone dystrophy; cone–rod dystrophy; 2D (GUCY2D) gene encoding retinal guanylate GUCY2D; RETGC-1 cyclase-1 (RETGC-1). Methods: Retrospective review of 29 patients from four generations of the same family. Results: Visual symptoms usually commenced Introduction in childhood. Only two patients, aged 14 and 1 Cone dystrophies are a genetically Department of 25 years, had visual acuity compatible with Ophthalmology, Torbay heterogeneous group of disorders characterised driving. Of the 12 patients aged over 40 years, Hospital, Torquay, by early deterioration of visual acuity and eight (66%) had vision of counting fingers or Devon, UK colour vision.1 Although cone dystrophies with worse and were eligible for blind registration normal rod function may occur, in most cases 2Institute of Biomedical and in the UK. Of the 29 patients, 18 (62%) had there is a degree of rod impairment, albeit less Clinical Science, Peninsula myopia greater than 5 D in at least one eye.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • GUCY2F Protein Recombinant Human Protein Expressed in Sf9 Cells
    Catalog # Aliquot Size G12-31G-20 20 µg G12-31G-50 50 µg GUCY2F Protein Recombinant human protein expressed in sf9 cells Catalog # G12-31G Lot # U1858-3 Product Description Purity Recombinant human GUCY2F (367-end) was expressed by baculovirus in Sf9 insect cells using an N-terminal GST tag. The gene accession number is BC156674. The purity of GUCY2F protein was determined to be >70% by Gene Aliases densitometry, GUCY2F approx. MW 110kDa. CYGF, GC-F, GUC2DL, GUC2F, RETGC-2, ROS-GC2 Formulation Recombinant protein stored in 50mM Tris-HCl, pH 7.5, 150mM NaCl, 10mM glutathione, 0.1mM EDTA, 0.25mM DTT, 0.1mM PMSF, 25% glycerol. Storage and Stability Store product at –70oC. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Scientific Background Guanylate cyclase 2F (GUCY2F) belongs to the adenylyl cyclase class-4/guanylyl cyclase family which also includes GUCY2D. Both GUCY2F and GUCY2D are responsible for the replenishment of cGMP in photoreceptors after exposure to light and are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2F Protein Full-length recombinant human protein expressed in sf9 cells GUCY2D. Catalog # G12-31G References Lot # U1858-3 1. Goraczniak R, et al: Structural and functional characteri- Purity >70% Concentration 0.05 µg/µl zation of a second subfamily member of the calcium- Stability 1yr at –70oC from date of shipment modulated bovine rod outer segment membrane Storage & Shipping Store product at –70oC.
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Exploring the Effect of Novel Small Molecules on Oligodendrocyte Precursor Proliferation Sagune Sakya University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn University Scholar Projects University Scholar Program Spring 5-1-2016 Exploring the Effect of Novel Small Molecules on Oligodendrocyte Precursor Proliferation Sagune Sakya University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/usp_projects Part of the Cellular and Molecular Physiology Commons, Medicinal Chemistry and Pharmaceutics Commons, Molecular and Cellular Neuroscience Commons, and the Nervous System Diseases Commons Recommended Citation Sakya, Sagune, "Exploring the Effect of Novel Small Molecules on Oligodendrocyte Precursor Proliferation" (2016). University Scholar Projects. 27. https://opencommons.uconn.edu/usp_projects/27 UNIVERSITY SCHOLAR PROJECT HONORS THESIS EXPLORING THE EFFECT OF NOVEL SMALL MOLECULES ON OLIGODENDROCYTE PRECURSOR PROLIFERATION By: Sagune Sakya University of Connecticut School of Pharmacy 2016 Chair and Major Project Advisor: Dr. Akiko Nishiyama, Department of Physiology and Neurobiology Advisor: Dr. Dennis Wright, Department of Pharmaceutical Sciences Advisor: Dr. Daniel Schwartz, Department of Physiology and Neurobiology Honors Advisor: Dr. Brian Aneskievich, Department of Pharmaceutical Sciences Sakya 2 Introduction Gliomas are the most common primary brain tumor in adults, representing about 81% of malignant brain tumors (Ostrom et al., 2014). Gliomas are malignant and invasive tumors that arise from glial tissue. Although it is a relatively rare disease, it can be devastating. Severe forms of glioma spread throughout the brain, destroy normal brain tissue, and are resistant to treatment. Gliomas can be classified in different ways. Gliomas can be categorized based on the predominant cell type in the tumors as astrocytomas, oligodendrogliomas, or oligoastrocytomas if the tumor has characteristics of both astrocytes and oligodendrocytes.
    [Show full text]
  • 1205 Domain Analysis of Human Transmembrane Guanylyl Cyclase Receptors
    [Frontiers in Bioscience 10, 1205-1220 May 1, 2005] DOMAIN ANALYSIS OF HUMAN TRANSMEMBRANE GUANYLYL CYCLASE RECEPTORS: IMPLICATIONS FOR REGULATION Lincoln R. Potter Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Ligands, tissue expression and "knockouts" 4. Common features of transmembrane guanylyl cyclases 4.1. General topology and oligomeric state 4.2. Homology of full-length receptors 4.3. Extracellular domain 4.3.1. Glycosylation 4.3.2. Extracellular disulfide bonds 4.4. Transmembrane domain 4.5. Kinase homology domain 4.6. Dimerization domain 4.7. Catalytic domain 5. Regulation 5.1. Effect of ATP 5.2. Phosphorylation and homologous desensitization 5.3. Regulation by protein kinase c and calcium 6. Perspective 7. Acknowledgements 8. References 1. ABSTRACT In the human genome, sequence analysis review, the tissue expression, ligands and "knockout" indicates there are five functional transmembrane guanylyl phenotypes of each receptor are summarized and individual cyclases, enzymes that synthesize the intracellular second domains are compared. In the second part, regulation by messenger, cGMP. Two, GC-A and GC-B or NPR-A and ATP, calcium, protein kinase C and phosphorylation is NPR-B, are widely distributed receptors for atrial discussed. natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide, more commonly known as ANP, BNP 2. INTRODUCTION and CNP, respectively. One cyclase, GC-C or StaR, is predominantly found in the intestinal epithelium and is the Enzymes that catalyze the formation of cGMP receptor for guanylin and uroguanylin, as well as for the from GTP are called guanylyl cyclases (GCs), although bacterial pathogen, heat-stable enterotoxin (Sta).
    [Show full text]
  • Novel GUCY2D Mutation Causes Phenotypic Variability of Leber Congenital Amaurosis in a Large Kindred Libe Gradstein1, Jenny Zolotushko2, Yuri V
    Gradstein et al. BMC Medical Genetics (2016) 17:52 DOI 10.1186/s12881-016-0314-2 RESEARCH ARTICLE Open Access Novel GUCY2D mutation causes phenotypic variability of Leber congenital amaurosis in a large kindred Libe Gradstein1, Jenny Zolotushko2, Yuri V. Sergeev3, Itay Lavy1, Ginat Narkis2, Yonatan Perez2, Sarah Guigui1, Dror Sharon4, Eyal Banin4, Eyal Walter1, Tova Lifshitz1 and Ohad S. Birk2,5* Abstract Background: Leber congenital amaurosis (LCA) is a severe retinal degenerative disease that manifests as blindness or poor vision in infancy. The purpose of this study was to clinically characterize and identify the cause of disease in a large inbred Bedouin Israeli tribe with LCA. Methods: Thirty individuals of a single kindred, including eight affected with LCA, were recruited for this study. Patients’ clinical data and electroretinography (ERG) findings were collected. Molecular analysis included homozygosity mapping with polymorphic markers and Sanger sequencing of candidate genes. Results: Of the eight affected individuals of the kindred, nystagmus was documented in five subjects and keratoconus in three. Cataract was found in 5 of 16 eyes. Photopic and scotopic ERG performed in 5 patients were extinguished. All affected subjects were nearly blind, their visual acuity ranged between finger counting and uncertain light perception. Assuming autosomal recessive heredity of a founder mutation, studies using polymorphic markers excluded homozygosity of affected individuals at the genomic loci of all previously known genes associated with LCA, except GUCY2D.SequencingofGUCY2D identified a novel missense mutation (c.2129C>T; p.Ala710Val) resulting in substitution of alanine by valine at position 710 within the protein kinase domain of the retina-specific enzyme guanylate cyclase 1 (GC1) encoded by GUCY2D.
    [Show full text]
  • Supplementary Table S1. Pyrosequencing Primers Used to Quantify the Methylation Status of Selected CG Sites
    Supplementary Table S1. Pyrosequencing primers used to quantify the methylation status of selected CG sites. CpG Probe ID Primer sequence Target Region coordinate Fwd: AGGAGGAGGGAATGTAAAATAGA chr3:148,415,620- AGTR1 149898314 Rev: ACTACCTAAAATCCTAACTATCAAAC 148,415,697 Seq: AGGGAATGTAAAATAGAGT Fwd: AGGGAATTTTGGATTAGTAATTTGA chr6:94,129,308- EPHA7 94185987 Rev: CTTACTCCACACTCCAATAATATCA 94,129,484 Seq: GGAATTTTGGATTAGTAATTTGAT Fwd: TTGTTAGAGGAGGGTGGAGAGG chr4:20,255,253- SLIT2 19864444 Rev: ACAAAAACAACATCTACCAACCA 20,255,449 Seq: TTTGGTATTTTGGGTTG Fwd: AGGGGATGTTTTGTTTTTATTAGAG chr6:133,562,774- EYA4 133603412 Rev: TTCCCRAAAAATTTAAAAATTCTCTCAACT 133,562,943 Seq: GTTTTGTTTTTATTAGAGGTATAG Fwd:GGAATTTTTAGGGAAGTTTTAGGTTAAAGA chr7:116,963,543- WNT2 116750796 Rev: TACAAATACTAACTCTTCATCCCAACTTCA 116,963,716 Seq: GGAAGTTTTAGGTTAAAGAGTA Fwd: AGTTGAGTTAGGGGGTTTAGG chr17:75,369,482- SEPT9 Rev: AACAACCAACCCAACACC 75369562 75,369,637 Seq: GTTAGTTTTGTATTGTAGGAG Fwd: AGTTTTAGGTTTYGGAGTAGGAAGGTT chr10:17,271,103- Rev: AAAATCCCCTCCCACTACCAT 17271192 VIM 17,271,233 Seq: GTTTTTAGTTYGGTTTTTATTGG Supplementary Table S2. Selected candidates: probes selected as candidates for colorectal cancer diagnostic markers based on microarray data. Normal Tumor tissue tissue Probe Name Gene cg CpG t-test Chromosome Annotation Product Mean Mean Symbol number coordinate p-value (Standard (Standard deviation) deviation) Homo sapiens angiotensin angiotensin II II receptor, type 1 receptor, AGTR1_P41_F AGTR1 cg22498996 3 149898314 0.063 (0.003) 0.481 (0.033) 2.48E-21 (AGTR1), transcript type 1 variant 1, mRNA. Homo sapiens EPH ephrin receptor EPHA7_E6_F EPHA7 cg20253378 6 94185987 receptor A7 (EPHA7), EphA7 0.057 (0.002) 0.303 (0.028) 1.27E-13 mRNA. Homo sapiens wingless- wingless-type MMTV type MMTV integration integration site family WNT2_P217_F WNT2 cg02655774 7 116750796 0.070 (0.003) 0.495 (0.037) 1.40E-19 site family member 2 member 2 precursor (WNT2), mRNA.
    [Show full text]