A Re-Consideration of Pseudoperonospora Cubensis and P

Total Page:16

File Type:pdf, Size:1020Kb

A Re-Consideration of Pseudoperonospora Cubensis and P Mycol. Res. 109 (7): 841–848 (July 2005). f The British Mycological Society 841 doi:10.1017/S0953756205002534 Printed in the United Kingdom. A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data Young-Joon CHOI1, Seung-Beom HONG2 and Hyeon-Dong SHIN1* 1 Division of Environmental Science and Ecological Engineering, College of Life and Environmental Sciences, Korea University, Seoul 136-701, Korea. 2 Korean Agricultural Culture Collection, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea. E-mail : [email protected] Received 27 May 2004; accepted February 2005. Phylogenetic analysis of the ITS rDNA region was carried out with two economically important downy mildews, Pseudoperonospora cubensis, which infects species of Cucumis, Cucurbita, and Citrullus belonging to Cucurbitaceae, and P. humuli, which infects plants of the genus Humulus belonging to Cannabaceae. Two closely related species, P. cannabina and P. celtidis, were also included to reveal taxonomic relationships with the first two mildews. All four species formed a well-resolved clade when compared with the ITS sequences of other downy mildew genera, using Bayesian inference and maximum parsimony. The P. cubensis isolates obtained from different hosts and (or) geographical origins in Korea, exhibited no intraspecific variability in the ITS sequences. The phylogenetic analyses of P. cubensis and P. humuli showed that they share a high level of sequence homology; the morphology of the sporangiophores, sporangia, and dehiscence apparatus confirmed the similarity of the two species. We therefore reduce P. humuli to the status of a taxonomic synonym of P. cubensis. INTRODUCTION P. humuli commonly occurs in all of the hop-growing countries of the Northern Hemisphere. The disease was Among the seven accepted species of Pseudoperono- first reported in 1905 in Japan, and within a few dec- spora (Waterhouse & Brothers 1981, Kirk et al. 2001), ades it had spread pandemically throughout Europe, P. cubensis and P. humuli which cause cucurbit and hop North America, and the former USSR (Miyabe & downy mildews respectively, are the most economically Takahashi 1906, Salmon & Ware 1925, Arens 1929, and ecologically important. P. cubensis, the type species Novotel’nova & Pystina 1985), and crop losses were of the genus, is a destructive pathogen on wild and devastating. P. cannabina, which infects species of cultivated cucurbitaceous plants worldwide. Among Cannabis, has become more widespread with the in- the plants attacked by this fungus, Cucumis sativus, creased cultivation of the host. Although the hosts and C. melo, Cucurbita spp., and Citrullus vulgaris are the morphological characters of the two mildews are the most important cultivated hosts. Because the closely related respectively, Jaczewski (1928) suggested variability of morphological characters and of infec- that P. cannabina is considerably different in the mor- tivity of these fungi was shown to be dependent on the phological characteristics of the sporangiophores and host plants and (or) environmental conditions (Iwata sporangia, and therefore it would be impossible to 1942, 1953a, b, Palti 1974, Palti & Cohen 1980, Water- confuse it with P. humuli. house & Brothers 1981), the fungi were not considered During a taxonomic revision of downy mildews as different taxa (Iwata 1942, Waterhouse & Brothers in Korea (Shin & Choi 2003), the morphological 1981). However, no molecular or genetic evidence to characteristics of specimens belonging to P. cubensis, confirm the homogeny of P. cubensis isolates from P. humuli, and P. celtidis, were studied. This study different host genera or species was provided. indicated that P. cubensis and P. humuli might indeed Two other downy mildews, P. humuli and P. canna- be conspecific, although the hosts of the two mildews bina, are recorded on members of Cannabaceae. are somewhat distantly related. Previously, it had been shown that the shape of the haustoria (Fraymouth * Corresponding author. 1959), and the ultrastructure of the dehiscence Downloaded from https://www.cambridge.org/core. University of Athens, on 02 Oct 2021 at 23:55:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0953756205002534 Pseudoperonospora cubensis 842 apparatus (Constantinescu 2000), were identical in both morphological characteristics of sporangiophores and species. However, similarities in the morphology of the sporangia, were examined. downy mildews do not necessarily mean that they are conspecific. Therefore, a confirmation of the similarity DNA extraction, PCR amplification, and sequencing of P. cubensis and P. humuli using molecular methods is required. Genomic DNA was extracted from sporangiophores The five species of Pseudoperonospora, including and sporangia formed on the lower surface of the P. celtidis and P. urticae, parasitic on hosts in the infected leaves or using the infected host tissue of Ulmaceae and Urticaceae, are morphologically simi- herbarium specimens. The presence of the sporangio- lar (Waterhouse & Brothers 1981, Constantinescu & phores and sporangia of the downy mildews was Fatehi 2002), and their host families are also closely checked under a dissecting microscope (Olympus SZ). related (Berg 1977, Soltis et al. 1997, Angiosperm The extraction was undertaken according to White et al. Phylogeny Group 1998, Song et al. 2001). Therefore, (1990). The primers DC6 (5k-GAG-GGA-CTT-TTG- molecular analyses could be expected to provide the GGT-AAT-CA-3k) and ITS4 (5k-TCC-TCC-GCT- necessary data to elucidate the relationships among TAT-TGA-TAT-GC-3k) were used for the selective other species of the genus, as well as between P. amplification of the complete ITS region of the rDNA. cubensis and P. humuli. Sequence analysis of the ITS PCRs were conducted in 50 ml reaction volumes. Each region of rDNA has proved to be a very powerful tool reaction tube contained 1.2 ml of template DNA sol- for the comparison of closely related species within ution (approx. 100 ng), prepared as above, and 5 ml the oomycetes (Brasier & Hansen 1992, Lee & Taylor of 10r buffer (50 mM KCl, 100 mM Tris-HCl (pH 8.0), 1992, Mitchell, Roberts & Moss 1995, Crawford et al. 0.1% Triton X-100, 15 mM MgCl2), 3 ml of 2.5 mM 1996, Cooke et al. 2000), and this method has recently dNTP, 0.4 ml (each) of 100 mM primers, 0.4 mlofTaq x1 been applied to resolve the taxonomic and phylogenetic polymerase (5 unit ml ), and 39.6 ml of ddH2O. The problems of some downy mildews (Rehmany et al. following thermal cycling parameters were used; 2000, Constantinescu & Fatehi 2002, Choi, Hong & denaturation for 1 min at 95 xC, annealing for 1 min Shin 2002, 2003, Voglmayr 2003). at 58 x, and extension for 2 min at 72 x; 35 cycles were The purpose of this work was to reconsider the performed, with the first denaturation and the last relationship between P. cubensis and P. humuli in terms extension time extended to 5 min and 10 min, respect- of morphological and molecular characteristics, and ively. The success of the amplification was monitored to find out if P. cubensis isolates from different host by electrophoresis on 1% agarose gels. The PCR plant genera and (or) species were genetically homo- products were then electrophoresed on a 0.8% agarose genous. To reveal the relationships among the species gel, and the ITS regions were purified using a QIAquick within Pseudoperonospora, P. cannabina and P. celtidis gel extraction kit (Qiagen, Hilden). The purified DNAs were also included in the study. were ligated into pGEM-T easy vector (Promega, Madison, WI). Ligated plasmids were then trans- formed into Escherichia coli DH5aFk cells, and the MATERIALS AND METHODS transformants were selected by the standard blue-white screening procedure (Sambrook, Fritsch & Maniatis Fungal isolates 1989). Plasmids containing the ITS regions were iso- 18 collections of Pseudoperonospora cubensis and P. lated using a QIAquick plasmid minikit (Promega). humuli originating from various localities in the world, The purified plasmids were sequenced on an automatic as well as one specimen of P. celtidis from Korea, and sequencer (ABI Prism TM 377 DNA Sequencer). one of P. cannabina from Latvia, were used. For com- parison, several fresh isolates and (or) published Sequence alignment and phylogenetic analysis sequences from GenBank of other members of Perono- sporales,suchasHyaloperonospora, Peronospora, Sequences were edited with the DNASTAR computer Perofascia, Phytophthora,andPythium species were package to obtain the complete ITS regions. An also analysed (Table 1). Voucher specimens of the alignment of the sequences was performed using Korean collections are deposited in the Herbarium CLUSTAL W (Thompson, Higgins & Gibson 1994). of Systematic Mycology of Korea (SMK), Korea Both Bayesian inference and maximum parsimony University, Seoul. methods were used for the phylogenetic analysis. Bayesian analysis was performed using MRBAYES, version 2.01 (Huelsenbeck & Ronquist 2001). The Light microscopy general time reversible model (GTR) with a gamma- Both the fresh and older herbarium materials were distributed substitution rates was determined for a examined under a light microscope (Olympus BX-50). given data set using Modeltest 3.06 (Posada & Crandall To rehydrate the shrunken structures in old specimens, 1998) and PAUP* version 4b10 (Swofford 2002). Four a lactic acid technique was used (Shin & La 1993). incrementally
Recommended publications
  • PCR Detection of Pseudoperonospora Humuli and Podosphaera Macularis in Humulus Lupulus
    Plant Protect. Sci. Vol. 41, No. 4: 141–149 PCR Detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus JOSEF PATZAK Hop Research Institute Co., Ltd., Žatec, Czech Republic Abstract PATZAK J. (2005): PCR detection of Pseudoperonospora humuli and Podosphaera macularis in Humulus lupulus. Plant Protect. Sci., 41: 141–149. Hop downy mildew (Pseudoperonospora humuli) and hop powdery mildew (Podosphaera macularis) are the most important pathogens of hop (Humulus lupulus). The early detection and identification of these pathogens are often made difficult by symptomless or combined infection with another pathogens. Molecular analysis of internal transcribed spacer (ITS) regions of rDNA is a novel and very effective method of species determina- tion. Therefore, specific PCR assays were developed to detect the pathogens Pseudoperonospora humuli and Podosphaera macularis in naturally infected hop plants. The specific PCR primer combinations P1 + P2 and S1 + S2 amplified specific fragments from Pseudoperonospora humuli and Podosphaera macularis, respectively, and did not cross-react with hop DNA nor with DNA from other fungi. PCR primer combinations R1 + R2 and R3 + R4 could be used in multiplex PCR detection of Pseudoperonospora humuli, Podosphaera macularis, Verticillium albo-atrum and Fusarium sambucinum. Phylogenetic relationships were inferred for 42 species of the Erysiphales from nuclear rDNA (ITS1, 5.8S, ITS2). The molecular characterisation and phylogenetic analy- ses confirmed the species identification of hop powdery mildew. The PCR assays used in this study proved to be accurate and sensitive for detection, identification, classification and disease-monitoring of the major hop pathogens. Keywords: hop powdery mildew; hop downy mildew; internal transcribed spacers (ITS); PCR detection; phylo- genetic analysis Hop (Humulus lupulus L.) is a dioecious, peren- disease occurring worldwide.
    [Show full text]
  • Genetic and Pathogenic Relatedness of Pseudoperonospora Cubensis and P. Humuli
    Mycology Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli Melanie N. Mitchell, Cynthia M. Ocamb, Niklaus J. Grünwald, Leah E. Mancino, and David H. Gent First, second, and fourth authors: Department of Botany and Plant Pathology, third author: United States Department of Agriculture– Agricultural Research Service (USDA-ARS), Horticultural Crops Research Unit; and fifth author: USDA-ARS, Forage Seed and Cereal Research Unit, and Department of Botany and Plant Pathology, Oregon State University, Corvallis. Accepted for publication 6 March 2011. ABSTRACT Mitchell, M. N., Ocamb, C. M., Grünwald, N. J., Mancino, L. E., and in nuclear, mitochondrial, and ITS phylogenetic analyses, with the Gent, D. H. 2011. Genetic and pathogenic relatedness of Pseudoperono- exception of isolates of P. humuli from Humulus japonicus from Korea. spora cubensis and P. h u m u l i . Phytopathology 101:805-818. The P. cubensis isolates appeared to contain the P. humuli cluster, which may indicate that P. h um u li descended from P. cubensis. Host-specificity The most economically important plant pathogens in the genus experiments were conducted with two reportedly universally susceptible Pseudoperonospora (family Peronosporaceae) are Pseudoperonospora hosts of P. cubensis and two hop cultivars highly susceptible to P. humuli. cubensis and P. hu m u li, causal agents of downy mildew on cucurbits and P. cubensis consistently infected the hop cultivars at very low rates, and hop, respectively. Recently, P. humuli was reduced to a taxonomic sporangiophores invariably emerged from necrotic or chlorotic hyper- synonym of P. cubensis based on internal transcribed spacer (ITS) sensitive-like lesions. Only a single sporangiophore of P.
    [Show full text]
  • Identification and Alternative Management of Downy Mildew in Rose
    Revista Mexicana de Ciencias Agrícolas volume 9 number 8 November 12 - December 31, 2018 Article Identification and alternative management of downy mildew in rose Pablo Israel Álvarez Romero1 Rómulo García Velasco1§ Martha Elena Mora Herrera1 Martha Lidya Salgado Siclan2 Daniel Domínguez Serrano1 Tenancingo University Center-Autonomous University of the State of Mexico. Road Tenancingo-Villa Guerrero km 1.5, Tenancingo, State of Mexico. ZC. 52400. Tel 01 (714) 1407724. (pablo-alvarez- [email protected], [email protected], [email protected]). Faculty of Agricultural Sciences- Autonomous University of the State of Mexico. The Cerrillo Piedras Blancas, Toluca, State of Mexico, ZC. 50200. Tel. 01 (722) 2965529. ([email protected]). §Corresponding author: [email protected]. Abstract The downy mildew caused by Peronospora sparsa Berkeley is one of the most important diseases of the rose bush in Mexico, causing 100% losses. Its management is based on fungicides in continuous applications that tend to generate resistant populations. The search for alternatives is indispensable. In the present work, the morphometric and molecular identity of the agent associated with the downy mildew of the rose was confirmed, the effectiveness of the potassium phosphite (K3PO3), chitosan, silicon and mefenoxam was evaluated for the management of the disease and its effect on the length and diameter of floral stem. The study was conducted in summer and fall of 2013 in Tenancingo, State of Mexico. The morphometric characterization was carried out under a compound and scanning electron microscope. For molecular characterization, the ribosomal DNA of the ITS region was amplified with primers PS3 and PS1. The treatments were: potassium phosphite (K3PO3), chitosan, silicon, mefenoxam and control and were applied at weekly intervals.
    [Show full text]
  • Ohio Plant Disease Index
    Special Circular 128 December 1989 Ohio Plant Disease Index The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio This page intentionally blank. Special Circular 128 December 1989 Ohio Plant Disease Index C. Wayne Ellett Department of Plant Pathology The Ohio State University Columbus, Ohio T · H · E OHIO ISJATE ! UNIVERSITY OARilL Kirklyn M. Kerr Director The Ohio State University Ohio Agricultural Research and Development Center Wooster, Ohio All publications of the Ohio Agricultural Research and Development Center are available to all potential dientele on a nondiscriminatory basis without regard to race, color, creed, religion, sexual orientation, national origin, sex, age, handicap, or Vietnam-era veteran status. 12-89-750 This page intentionally blank. Foreword The Ohio Plant Disease Index is the first step in develop­ Prof. Ellett has had considerable experience in the ing an authoritative and comprehensive compilation of plant diagnosis of Ohio plant diseases, and his scholarly approach diseases known to occur in the state of Ohia Prof. C. Wayne in preparing the index received the acclaim and support .of Ellett had worked diligently on the preparation of the first the plant pathology faculty at The Ohio State University. edition of the Ohio Plant Disease Index since his retirement This first edition stands as a remarkable ad substantial con­ as Professor Emeritus in 1981. The magnitude of the task tribution by Prof. Ellett. The index will serve us well as the is illustrated by the cataloguing of more than 3,600 entries complete reference for Ohio for many years to come. of recorded diseases on approximately 1,230 host or plant species in 124 families.
    [Show full text]
  • The Infection Capabilities of Hop Downy Mildew^
    THE INFECTION CAPABILITIES OF HOP DOWNY MILDEW^ By G. R. HoERNER Agentj Division of Drug and Related Plants^ Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION Downy mildew, Pseudoperonospora humuli (Miyabe and Tak.) Wils, was first observed in commercial hopyards in Oregon in 1930. Following a survey to determine the incidence of infection, an inves- tigation of the life history and infection capabilities of the causal organ- ism was inaugurated. The primary objectives of the investigation were to determine the host range of the fungus; to discover any evi- dence of resistance to the fungus among botanical species, horticul- tural varieties, or strains of hops developed by means of selection or hybridization; and by attempting to infect all available known hosts of other species of the genus Psevdoperonospora, to confirm or dis- prove the opinion ^ that physiological races of the fungus may exist. MATERIALS AND METHODS In a previous paper the writer ^ discussed in some detail materials and methods employed and results obtained early in the course of this investigation. In addition to hop seedlings, the leaves of hop plants grown from cuttings were employed. Both cotyledons and leaves of seedlings, as well as the leaves of more mature plants of other host genera, were used. In some instances excised cotyledons and leaves were incubated after inoculation in Petri dish moist chambers or floated in covered Petri dishes of nutrient or sugar solutions. The methods of applying the inoculum varied also. In addition to the use of cameFs-hair brushes for the transfer of inoculum, water suspensions of zoosporangia were atomized onto the plant parts or placed in localized areas by means of a medicine dropper.
    [Show full text]
  • Mildew (Peronospora Sparsa)
    A review into control measures for blackberry downy mildew (Peronospora sparsa) Guy Johnson and Ruth D’Urban-Jackson ADAS Boxworth, Battlegate Road, Cambridgeshire, CB23 4NN Background Control of downy mildew in commercial blackberry production is becoming increasingly difficult. Losses of effective spray control products in recent years, particularly close to harvest, have exacerbated the problem. Novel and alternative approaches will be required in future. AHDB has already funded several projects to assess new control measures, but this desk study aims to identify additional ideas. Summary of main findings • Use of protected cropping to reduce leaf wetness will help minimise infection • Good site selection to maximise light interception, maintain good air movement and avoid natural sources of infection is important • Maintain good air movement by removing weed growth in the crop vicinity and managing the crop to avoid excessive vegetative growth • Reduce relative humidity below 85%. The use of air fans in glasshouse crops improves air movement • Manage nitrogen application carefully to avoid excessive leaf growth • Photoselective polythene to alter the wavelength of light reaching the crop could affect the infection rate, but this requires further study • The efficacy of the currently approved biopesticide control agents Serenade ASO, Sonata, Amylo X and Prestop requires further assessment • Elicitors (such as potassium phosphite) and plant extracts are known to offer varying levels of control, but these need further screening to assess
    [Show full text]
  • Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics
    plants Review Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics Andres F. Salcedo 1 , Savithri Purayannur 1 , Jeffrey R. Standish 1 , Timothy Miles 2, Lindsey Thiessen 1 and Lina M. Quesada-Ocampo 1,* 1 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA; [email protected] (A.F.S.); [email protected] (S.P.); [email protected] (J.R.S.); [email protected] (L.T.) 2 Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] Abstract: Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. In this review, we provide information on the use of molecular markers, serological techniques, and nucleic acid amplification technologies for downy mildew diagnosis, highlighting the benefits and disadvantages of the technologies and target selection. We emphasize the importance of incorporating information on pathogen variability in virulence and fungicide resistance for disease management and how the Citation: Salcedo, A.F.; Purayannur, development and application of diagnostic assays based on standard and promising technologies, S.; Standish, J.R.; Miles, T.; Thiessen, including high-throughput sequencing and genomics, are revolutionizing the development of species- L.; Quesada-Ocampo, L.M. Fantastic specific assays suitable for in-field diagnosis.
    [Show full text]
  • Pseudoperonospora Cubensis and P. Humuli Detection Using Species-Specific Probes and High Definition Melt Curve Analysis
    Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis Summers, C. F., Adair, N. L., Gent, D. H., McGrath, M. T., & Smart, C. D. (2015). Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis. Canadian Journal of Plant Pathology, 37(3), 315-330. doi:10.1080/07060661.2015.1053989 10.1080/07060661.2015.1053989 Taylor & Francis Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Can. J. Plant Pathol., 2015 Vol. 37, No. 3, 315–330, http://dx.doi.org/10.1080/07060661.2015.1053989 Epidemiology / Épidémiologie Pseudoperonospora cubensis and P. humuli detection using species-specific probes and high definition melt curve analysis CARLY F. SUMMERS1, NANCI L. ADAIR2, DAVID H. GENT2, MARGARET T. MCGRATH3 AND CHRISTINE D. SMART1 1Plant Pathology and Plant-Microbe Biology Section, SIPS, Cornell University, Geneva, NY 14456, USA 2USDA-ARS, Forage Seed and Cereal Research Unit and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, USA 3Plant Pathology and Plant-Microbe Biology Section, SIPS, Cornell University, Long Island Horticultural Research and Extension Center, Riverhead, NY 11901, USA (Accepted 16 May 2015) Abstract: Real-time PCR assays using locked nucleic acid (LNA) probes and high resolution melt (HRM) analysis were developed for molecular differentiation of Pseudoperonospora cubensis and P. humuli, causal agents of cucurbit and hop downy mildew, respectively. The assays were based on a previously identified single nucleotide polymorphism (SNP) in the cytochrome oxidase subunit II (cox2) gene that differentiates the two species. Sequencing of the same region from 15 P.
    [Show full text]
  • <I>Peronospora Belbahrii</I>
    VOLUME 6 DECEMBER 2020 Fungal Systematics and Evolution PAGES 39–53 doi.org/10.3114/fuse.2020.06.03 Two new species of the Peronospora belbahrii species complex, Pe. choii sp. nov. and Pe. salviae-pratensis sp. nov., and a new host for Pe. salviae-officinalis M. Hoffmeister1, S. Ashrafi1, M. Thines2,3,4*, W. Maier1* 1Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany 2Goethe University, Faculty of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany 3Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany 4LOEWE-Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main, Germany *Joint senior and corresponding authors, listed in alphabetical order of the first names: [email protected]; [email protected] Key words: Abstract: The downy mildew species parasitic to Mentheae are of particular interest, as this tribe of Lamiaceae coleus contains a variety of important medicinal plants and culinary herbs. Over the past two decades, two pathogens, downy mildew Peronospora belbahrii and Pe. salviae-officinalis have spread globally, impacting basil and common sage production, multi-gene phylogeny respectively. In the original circumscription ofPe. belbahrii, the downy mildew of coleus (Plectranthus scutellarioides) new host report was ascribed to this species in the broader sense, but subtle differences in morphological and molecular phylogenetic new taxa analyses using two genes suggested that this pathogen would potentially need to be assigned to a species of its own.
    [Show full text]
  • I. Albuginaceae and Peronosporaceae) !• 2
    ANNOTATED LIST OF THE PERONOSPORALES OF OHIO (I. ALBUGINACEAE AND PERONOSPORACEAE) !• 2 C. WAYNE ELLETT Department of Plant Pathology and Faculty of Botany, The Ohio State University, Columbus ABSTRACT The known Ohio species of the Albuginaceae and of the Peronosporaceae, and of the host species on which they have been collected are listed. Five species of Albugo on 35 hosts are recorded from Ohio. Nine of the hosts are first reports from the state. Thirty- four species of Peronosporaceae are recorded on 100 hosts. The species in this family re- ported from Ohio for the first time are: Basidiophora entospora, Peronospora calotheca, P. grisea, P. lamii, P. rubi, Plasmopara viburni, Pseudoperonospora humuli, and Sclerospora macrospora. New Ohio hosts reported for this family are 42. The Peronosporales are an order of fungi containing the families Albuginaceae, Peronosporaceae, and Pythiaceae, which represent the highest development of the class Oomycetes (Alexopoulous, 1962). The family Albuginaceae consists of the single genus, Albugo. There are seven genera in the Peronosporaceae and four commonly recognized genera of Pythiaceae. Most of the species of the Pythiaceae are aquatic or soil-inhabitants, and are either saprophytes or facultative parasites. Their occurrence and distribution in Ohio will be reported in another paper. The Albuginaceae include fungi which are all obligate parasites of vascular plants, causing diseases known as white blisters or white rusts. These white blisters are due to the development of numerous conidia, sometimes called sporangia, in chains under the epidermis of the host. None of the five Ohio species of Albugo cause serious diseases of cultivated plants in the state.
    [Show full text]
  • Peronospora Sparsa Biology and Drivers of Disease Epidemics in Boysenberry
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Peronospora sparsa biology and drivers of disease epidemics in boysenberry A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Anusara Mihirani Herath Mudiyanselage Lincoln University 2015 i Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Peronospora sparsa biology and drivers of disease epidemics in boysenberry Anusara Mihirani Herath Mudiyanselage Downy mildew, caused by the biotrophic oomycetes, Peronospora sparsa, is a major disease of boysenberries, with crop loss from disease for conventional growers being up to 45% and for organic growers up to 100% in some years. Most boysenberry plant material (including tissue culture propagated plants) are systemically infected with the pathogen. Disease expression by sporulation of naturally infected leaves, stems/canes and calyxes at 15ºC under high humidity in the field was identified as the source of inoculum in the wider Nelson area in 2010 and 2011 with peak spore dispersal in mid-November.
    [Show full text]
  • Phylogenetic Investigations in the Genus Pseudoperonospora Reveal Overlooked Species and Cryptic Diversity in the P
    Eur J Plant Pathol (2011) 129:135–146 DOI 10.1007/s10658-010-9714-x Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster Fabian Runge & Young-Joon Choi & Marco Thines Accepted: 20 October 2010 /Published online: 17 December 2010 # KNPV 2010 Abstract Pseudoperonospora cubensis is one of the ones. Pseudoperonospora on Celtis is split into two most devastating diseases of cucurbitaceous crops. phylogenetic lineages and Pseudoperonospora humuli The pathogen has a worldwide distribution and occurs is confirmed as a species distinct from the Cucurbitaceae- in all major cucurbit growing areas. It had been infecting lineages. A cryptic species occupying a basal noticed for the first time at the end of the 19th position within the Pseudoperonospora cubensis com- century, but it became a globally severe disease as plex is revealed to be present on Humulus japonicus, recentlyas1984inEuropeand2004inNorth thus providing evidence that the host jump that gave rise America. Despite its economic importance, species to Pseudoperonospora cubensis likely occurred from concepts in Pseudoperonospora are debated. Here, we hops. Notably, Cucurbitaceae infecting pathogens are report that the genus Pseudoperonospora contains present in two cryptic sister species or subspecies. Clade cryptic species distinct from the currently accepted 1 contains primarily specimens from North America and likely represents Pseudoperonospora cubensis s.str.. Pre-epidemic isolates in clade 2 originate from Japan F. Runge and Korea, suggesting this cryptic species or subspecies Institute of Botany 210, University of Hohenheim, is indigenous to East Asia. Recent samples of this 70593 Stuttgart, Germany lineage from epidemics in Europe and the United States cluster together with clade 2.
    [Show full text]