Growth Stress in Peltophorum Dubium and Its Correlation with the Growth Variables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cjfr-2016-0392.Pdf
Canadian Journal of Forest Research Minimum age for clear -cutting native species with energetic potential in the Brazilian semi-arid Journal: Canadian Journal of Forest Research Manuscript ID cjfr-2016-0392.R3 Manuscript Type: Note Date Submitted by the Author: 02-Dec-2016 Complete List of Authors: Santana, Otacilio; Universidade Federal de Pernambuco, Biophysics and Radiobiology Keyword: growth rings,Draft firewood, Semi-Arid, rotation age, bioenergy https://mc06.manuscriptcentral.com/cjfr-pubs Page 1 of 24 Canadian Journal of Forest Research 1 Minimum age for clear-cutting native species with energetic potential in the Brazilian 2 semi-arid region 3 4 Otacilio Antunes Santana 1 5 Av. Prof. Moraes Rego, n° 1235, Departamento de Biofísica e Radiobiologia (DBR), 6 Mestrado Profissional em Rede Nacional para o Ensino das Ciências Ambientais 7 (PROFCIAMB), Centro de Biociências (CB), Universidade Federal de Pernambuco (UFPE), 8 Cidade Universitaria, Recife, Pernambuco, Brazil, 50670-901 9 [email protected] 10 [email protected] 11 +55 81 997371266 12 1Author for correspondence Draft 13 14 15 16 17 18 19 20 21 22 23 24 25 1 https://mc06.manuscriptcentral.com/cjfr-pubs Canadian Journal of Forest Research Page 2 of 24 26 Abstract 27 What is the minimum age for clear-cutting native species with energetic potential in the 28 Brazilian semi-arid region? This was the central question of this study, which aimed at 29 estimating the minimum cutting cycle for native woody species from an area covered by a 30 sustainable forest management plan. Individuals (n = 240) of twelve species native to the 31 semi-arid region were measured and wood discs were taken from them to collect data relative 32 to: i) volume, by an industrial 3D scanner; ii) density, using a high-frequency densitometer; 33 iii) age, by a growth ring measuring device; and iv) the lower heating value, by an oxygen 34 bomb calorimeter and an elemental analyzer. -
Rbcl and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C
rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C. Donovan Bailey; Jeff J. Doyle Systematic Botany, Vol. 26, No. 3. (Jul. - Sep., 2001), pp. 515-536. Stable URL: http://links.jstor.org/sici?sici=0363-6445%28200107%2F09%2926%3A3%3C515%3ARALPWP%3E2.0.CO%3B2-C Systematic Botany is currently published by American Society of Plant Taxonomists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aspt.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. -
Salt Tolerant Plants Info Sheet for East Central Florida * Asterisk Indicates Native Plant
Salt Tolerant Plants Info Sheet for east central Florida * asterisk indicates native plant TREES Tabebuia Tabebuia spp. High Salt Tolerance Texas Wild Olive Cordia boissieri Common Name Botanical Name Weeping Podocarpus Podocarpus gracilior Acacia, Sweet Acacia farnesiana Yaupon Holly Ilex vomitoria Autograph Tree/Pitch Apple Clusia rosa Yellow Elder Tecoma stans Black Olive Bucida buceras Yellow Jacaranda/Poinciana Peltophorum dubium Buttonwood Conocarpus erectus Wax Myrtle* Myrica cerifera Cassia Cassia spp. Gumbo Limbo Bursera simaurubra BAMBOO Jerusalem Thorn Parkinsonia aculeata Moderate Salt Tolerance Lignum Vitae Guaiacum sanctum Common Name Botanical Name Live Oak* Quercus virginiana Arrow Bamboo Pseudosasa japonica Magnolia* Magnolia grandiflora Common Timber Bambusa vulgaris Mahoe Thespesia populnea Hawaiian Stripe Bambusa vulgaris Mahogany Swietenia mahagoni Wamin Bambusa vulgaris Norfolk Island Pine Araucari heterophylla Oleander Nerium oleander Orange Geiger Tree Cordia sebestena PALMS Paradise Tree Simaruba glauca High Salt Tolerance Plumeria/Frangipani Plumeria spp. Common Name Botanical Name Red Bay* Persea borbonia Australian Fan Pam Livistonia australis Screw Pine/Pandanus Pandanus utilis (and spp.) Bismarkia Bismarkia nobilis Sea Grape** Coccoloba uvifera Bottle Palm Hyophorbe lafenicaulis Sea Hibiscus Hibiscus tiliaceus Buccaneer Palm* Pseudophoenix sargentii Silk Floss Chorisia speciosa Cabbage Palm/Sabal* Sabal palmetto Silver Buttonwood Conocarpus sericeus Cardboard Palm Zamia furfuracea Sweet Acacia Acacia farnesiana Canary Island Date Palm Phoenix canariensis Tropical Almond Terminalia catappa Chinese Fan Palm Livistonia chinensis Thornless Acacia Acacia choriophylla Christmas Palm Adonidia merrillii Cliff Date Palm Phoenix rupicola TREES Coconut Palm Cocos nucifera Moderate Salt Tolerance Dwarf Royal Palm Veitchia spp. African Tulip Tree Spathodea campanulata Dwarf Sabal Palm Sabal minor Bald Cypress* Taxodium distichum European Fan Palm Chamaerops humilis Bottlebrush Callistemon spp. -
Aspects of Peltophorum Dubium Sprengel (Taubert) Seeds in an Aerial Seed Bank1
32 http://dx.doi.org/10.1590/2317-1545v39n1168605 Aspects of Peltophorum dubium Sprengel (Taubert) seeds in an aerial seed bank1 Girlânio Holanda Silva2*, Anderson Cleiton José3, José Marcio Rocha Faria3, Wilson Vicente Souza Pereira3 ABSTRACT – Knowledge concerning natural regeneration strategies is important due to the effect of natural regeneration on the local ecosystem. The aim of this study was to examine the ecophysiological aspects of the Peltophorum dubium aerial seed bank. Fruits were harvested monthly, before and after seed maturation, from selected trees in the municipality of Lavras, MG, Brazil, for determination of moisture content, acquisition of tolerance to desiccation, seed viability, maintenance of dormancy, and mean germination time. Physiological maturity of the species was attained in June, when low moisture content, maximum dry matter, and high germination percentage were observed. We found that there was no change in dormancy, in germination percentage, or in the protein profile of seeds during the period they remained in the aerial seed bank. The P. dubium species creates an aerial seed bank of short serotiny, with fruits remaining attached to the tree for 9 months. Index terms: serotiny, seed longevity, seed vigor, angico-amarelo Comportamento de sementes de Peltophorum dubium Sprengel (Taubert) em banco de sementes aéreo RESUMO - O conhecimento sobre estratégias de regeneração natural é importante devido a sua influência no ecossistema local. Objetivou-se estudar o comportamento do banco de sementes aéreo de P. dubium. Os frutos foram colhidos mensalmente antes e após a maturação das sementes em matrizes localizadas no município de Lavras – MG. Mensalmente, foram determinados o conteúdo de água, aquisição da tolerância a dessecação, viabilidade das sementes, manutenção da dormência e tempo médio de germinação. -
Peltophorum Dubium Fruit Processing Influence on Germination
REVISTA CIENTÍFICA MULTIDISCIPLINAR NÚCLEO DO CONHECIMENTO ISSN: 2448-0959 https://www.nucleodoconhecimento.com.br PELTOPHORUM DUBIUM FRUIT PROCESSING INFLUENCE ON GERMINATION ORIGINAL ARTICLE REGNIER, Leonardo de Lima Pereira 1 REGNIER, Leonardo de Lima Pereira. Peltophorum dubium fruit processing influence on germination. Multidisciplinary Scientific Journal Knowledge Nucleus. Year 04, Ed. 10, Vol. 09, pp. 112-120. October 2019. ISSN:2448-0959 ABSTRACT Peltophorum dubium has gained economical relevance to its uses in forest plantations and agroforestry systems, but seedling production, establishment, and management information are still restricted. Thus, this study aimed to understand the influence of the fruits on P. dubium germination. About ten thousand fruits were evenly distributed between three replicas of each treatment: Integral fruits, cut fruits, and direct seed sowing. The material was kept in a greenhouse with white plastic covering and periodic irrigation system. Seeds did not germinate at the integral fruit treatment. All the studied indexes presented significant discrepancies, except to uncertainty index. Germination rate was close to other studies results. When kept inside the fruits, seeds require greater time to germinate, and when fruits were cut they present an intermediate pattern between direct seed sowing and integral fruits sowing. High and fast emergence of this species is probably associated with its ecological whole as early secondary. Keywords: Canafístula, Forestry seeds, Fabaceae, Seedling production. 1 Master’s student - Department of Botany, Institute of Biosciences University of São Paulo (USP) – Brazil. RC: 39784 Disponível em: https://www.nucleodoconhecimento.com.br/biology/germination REVISTA CIENTÍFICA MULTIDISCIPLINAR NÚCLEO DO CONHECIMENTO ISSN: 2448-0959 https://www.nucleodoconhecimento.com.br INTRODUCTION Peltophorum dubium (Spreng.) Taub. -
A New Fossil Wood of Peltophoroxylon (Leguminosae: Caesalpinioideae) from the El Palmar Formation (Late Pleistocene), Entre Ríos, Argentina
Soledad RamosIAWA et al. Journal– Pleistocene 35 (2), Peltophoroxylon 2014: 199–212 from Argentina 199 A NEW FOSSIL WOOD OF PELTOpHOROXYLON (LEGUMINOSaE: CaESaLPINIOIDEaE) FROM THE EL PaLMaR FORMaTION (LaTE PLEISTOcENE), ENTRE RÍOS, ARGENTINa R. Soledad Ramos1,2,*, Mariana Brea1,3 and Romina Pardo4 1Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICyTTP- CONICET), Dr. Matteri y España SN, E3105BWA, Diamante, Entre Ríos, Argentina 2FONCyT - Agencia Nacional de Promoción Científica y Tecnológica 3CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas 4Cátedra de Dasonomía, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avenida Bolivia 5150, 4400 Salta, Argentina *Corresponding author; e-mail: [email protected] abstract This paper describes the first record ofPeltophoroxylon (Ramanujam) Müller- Stoll et Mädel 1967 from the late Pleistocene of Argentina. The fossil specimens were recovered from the Colonia Ayuí and Punta Viracho fossil localities of the El Palmar Formation, located in the middle part of the Uruguay Basin, eastern Argentina. The diagnostic features are: growth ring boundaries demarcated by marginal parenchyma, medium-sized vestured intervessel pits, vessel-ray paren- chyma pits similar in size and shape to intervessel pits, vasicentric to lozenge type aliform axial parenchyma, biseriate (70%) and uniseriate (30%) homocel- lular rays, non-septate and septate fibers, and long chains (10+) of prismatic crystals in chambered axial parenchyma cells. These features suggest a relation- ship with Peltophorum (Vogel) Benth. (Leguminosae: Caesalpinioideae). The vessel diameter and vessel density of the El Palmar woods are consistent with the temperate-warm, humid-semiarid climate inferred for this region during the late Pleistocene. Keywords: Wood anatomy, Peltophoroxylon, Pleistocene, Uruguay Basin, Argentina. -
Pteridium Arachnoideum (Kaulf.) Maxon (Dennstaedtiaceae) on a Neotropical Savanna
Acta Botanica Brasilica 29(2): 213-222. 2015. doi: 10.1590/0102-33062014abb3722 Invasion impact by Pteridium arachnoideum (Kaulf.) Maxon (Dennstaedtiaceae) on a neotropical savanna Natalia Guerin1* and Giselda Durigan2 Received: August 18, 2014 Accepted: January 14, 2015 ABSTRACT Whether management intervention is required to control biological invasions depends primarily on demonstrating species losses resulting from such invasions. Brackens of the Pteridium genus are currently regarded as a problem species that act as important ecological filters in the assembly of invaded communities. We investigated the effects of Pteridium arachnoideum invasion on the diversity, structure, floristic composition, and functional traits of cerradão in Assis, São Paulo, Brazil. We compared an invaded site with an adjacent non-invaded site. Bracken constrained the establishment of tree species, resulting in a community structure remarkably distinct from the non-invaded area. The density and basal area of the arboreal community were higher in non-invaded areas, but large trees were more frequent in the invaded areas. However, bracken did not reduce tree species diversity. Both richness and diversity were higher in the invaded area, indicating that over time, tree species richness and diversity naturally recovered, albeit slowly, in the invaded area. Therefore, one cannot attribute the loss of richness in the Cerrado vegetation to bracken invasion. Hence, we argue that, in this system, eradication of this invasive species is not likely to be cost effective, and thus, it should be a low management priority. Keywords: assembly rules, bracken, Brazil, cerradão, ecological filters, ecosystem management Introduction species in various regions of Brazil (Matos & Pivello 2009; Portela et al. -
A Flora of Southwestern Arizona
Felger, R.S. and S. Rutman. 2015. Ajo Peak to Tinajas Altas: a flora of southwestern Arizona. Part 14. Eudicots: Fabaceae – legume family. Phytoneuron 2015-58: 1–83. Published 20 Oct 2015. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA. PART 14. EUDICOTS: FABACEAE – LEGUME FAMILY RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & Sky Island Alliance P.O. Box 41165 Tucson, Arizona 85717 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 [email protected] ABSTRACT A floristic account is provided for the legume family (Fabaceae) as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in the heart of the Sonoran Desert of southwestern Arizona. This flora includes 47 legume species in 28 genera, which is 6% of the total local vascular plant flora. These legumes are distributed across three subfamilies: Caesalpinioideae with 7 species, Mimosoideae 9 species, and Papilionoideae 28 species. Organ Pipe includes 38 legume species, Cabeza Prieta 22 species, and Tinajas Altas 10 species. Perennials, ranging from herbaceous to trees, account for 49 percent of the flora, the rest being annuals or facultative annuals or perennials and mostly growing during the cooler seasons. This publication, encompassing the legume family, is our fourteenth contribution to the vascular plant flora in southwestern Arizona. The flora area covers 5141 km2 (1985 mi2) in the Sonoran Desert (Figure 1). These contributions are published in Phytoneuron and also posted on the website of the University of Arizona Herbarium (http://cals.arizona.edu/herbarium/content/flora-sw- arizona). -
3.3.2.1. Familia Fabaceae O Leguminosae
122 3.3.2.1. Familia Fabaceae o Leguminosae La familia Fabaceae es considerada claramente monofilética en análisis tanto moleculares como morfológicos, sin embargo según Takhtajan 1997 era tratada como tres familias distintas. En las actuales reconstrucciones de filogenia, la subfamilia Caesalpinioideae es considerada parafilética, mientras que las subfamilias Mimosoideae y Faboideae (o Papilionoideae) son consideradas monofiléticas. Sin embargo, actualmente el reconocimiento de la subfamilia Caesalpinoideae se mantiene por razones meramente prácticas. (Steven, 2009) Los estudios filogenéticos llevados a cabo hasta el momento no fueron suficientes para la elaboración de una clasificación aceptable a nivel de subfamilias en Fabaceae. De cualquier forma es evidente que la subfamilia Caesalpinoideae al ser considerada parafilética debe ser redefinida. Así uno de los grupos que aparece claramente disociado de las Caesalpinoideae es Cercideae, al cual pertenece el género Bauhinia. Sin embargo es muy prematuro el reconocimiento de nuevos grupos formalmente (Lewis, 2005). Lo que queda claro hasta el momento es que el número de subfamilias dentro de Fabaceae debe ser superior de las tres tradicionalmente reconocidas y que el clado Cercideae podrá constituir una de las nuevas subfamilias.(Souza & Lorenzi, 2008) A nivel de familia, las leguminosas se encuentran cercanamente relacionadas con las familias Polygalaceae, Suraniaceae y Quillajaceae, las cuales forman el orden Fabales (Stevens, 2001) Clave artificial para el reconocimiento de las subfamilias 1. Flores actinomorfas, que forman capítulos, espigas o racimos. Corola con prefloración valvar y con frecuencia gamopétala. Estambres 4-8-∝, sobrepasando la corola; filamentos libres. Polen frecuentemente en políadas. Semillas con línea fisural. I. Mimosoideae 1`. Flores zigomorfas, generalmente en racimos. -
Street Trees for Central Florida
Street Trees for Central Florida Magnolia grandiflora, Southern bloomer. ‘Majestic Magnolia, is a widely planted flowering Beauty’ has very large tree in our area. It is a Florida native and leaves and flowers that well adapted to our climate. Southern can be up to 12" across. Magnolia bears large, extremely fragrant ‘Bracken’s Brown Beauty’ white flowers in late spring and summer. has a very dense and Southern Magnolias are large trees and compact growth habit can grow 30-60 feet tall. Seed grown with leaves that have a trees are variable in their growth habit, rusty brown underside. flower period and size, and leaf size and Southern Magnolias are color. There are also many cultivars of drought tolerant once this tree available with different growth they are well established and flowering habits. ‘D.D. Blanchard’ but need to be watered has become one of the most popular well when they are first varieties. It has dark green leaves with planted. orangish-brown undersides. It is also a Nageia nagi, the Nagi faster growing variety. ‘Little Gem’ is the or Broadleaf Podocarpus smallest cultivar. It only grows 10-20 Tree, is an evergreen feet tall and the flowers and leaves are conifer that can reach 50 half the size of a normal Southern to 70 feet. It is a Magnolia. It also has a longer flowering moderate grower with a period and can flower sporadically from dense and upright growth summer until Christmas. ‘Alta’ is a habit. The leaves are dark newer selection with a strong upright green, leathery, and shiny. -
Forest Ecosystems Forest Ecosystems International Journal of Forestry Research
International Journal of Forestry Research Forest Ecosystems Forest Ecosystems International Journal of Forestry Research Forest Ecosystems Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a focus issue published in “International Journal of Forestry Research.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Han Chen, Canada Kurt Johnsen, USA Timo Pukkala, Finland Chris Cieszewski, USA Chandra Prakash Kala, India Robin Reich, USA Piermaria Corona, Italy Seppo Kellomaki,¨ Finland Scott D. Roberts, USA Qing-Lai Dang, Canada Kihachiro Kikuzawa, Japan Lisa Samuelson, USA Daniel C. Dey, USA Guy R. Larocque, Canada John Sessions, USA Yousry El-Kassaby, Canada Harri Makinen,¨ Finland Hubert Sterba, Austria Edward Farrell, Ireland Azim Mallik, Canada Andrew J. Storer, USA Mark Finney, USA Timothy Martin, USA Michael Tausz, Australia Jianbang Gan, USA Brian C. McCarthy, USA I. B. Vertinsky, Canada Frank Gilliam, USA Guillermo Mendoza, USA Kristiina Vogt, USA Andrew M. Gordon, Canada Ram Oren, USA Contents Rainfall and Elevation Influence the Local-Scale Distribution of Tree Community in the Southern Region of Western Ghats Biodiversity Hotspot (India), Shijo Joseph, K. Anitha, V. K. Srivastava, Ch. Sudhakar Reddy, A. P. Thomas, and M. S. R. Murthy Volume 2012, Article ID 576502, 10 pages Assessing Forest Production Using Terrestrial Monitoring Data, Hubert Hasenauer and Chris S. Eastaugh Volume 2012, Article ID 961576, 8 pages Participatory Resource Mapping for Livelihood Values Derived from the Forest in Ekondo-Titi Subregion, Cameroon: A Gender Analysis, Daniel B. -
Floral Structure and Systematics in Four Orders of Rosids, Including a Broad Survey of floral Mucilage Cells
Pl. Syst. Evol. 260: 199–221 (2006) DOI 10.1007/s00606-006-0443-8 Floral structure and systematics in four orders of rosids, including a broad survey of floral mucilage cells M. L. Matthews and P. K. Endress Institute of Systematic Botany, University of Zurich, Switzerland Received November 11, 2005; accepted February 5, 2006 Published online: July 20, 2006 Ó Springer-Verlag 2006 Abstract. Phylogenetic studies have greatly ened mucilaginous inner cell wall and a distinct, impacted upon the circumscription of taxa within remaining cytoplasm is surveyed in 88 families the rosid clade, resulting in novel relationships at and 321 genera (349 species) of basal angiosperms all systematic levels. In many cases the floral and eudicots. These cells were found to be most structure of these taxa has never been compared, common in rosids, particulary fabids (Malpighi- and in some families, even studies of their floral ales, Oxalidales, Fabales, Rosales, Fagales, Cuc- structure are lacking. Over the past five years we urbitales), but were also found in some malvids have compared floral structure in both new and (Malvales). They are notably absent or rare in novel orders of rosids. Four orders have been asterids (present in campanulids: Aquifoliales, investigated including Celastrales, Oxalidales, Stemonuraceae) and do not appear to occur in Cucurbitales and Crossosomatales, and in this other eudicot clades or in basal angiosperms. paper we attempt to summarize the salient results Within the flower they are primarily found in the from these studies. The clades best supported by abaxial epidermis of sepals. floral structure are: in Celastrales, the enlarged Celastraceae and the sister relationship between Celastraceae and Parnassiaceae; in Oxalidales, the Key words: androecium, Celastrales, Crossoso- sister relationship between Oxalidaceae and Con- matales, Cucurbitales, gynoecium, Oxalidales.