Cornus, Curtisia, Davidia, Diplopanax, Mastixia, and Nyssa Without Any Robust Lineages Among Them

Total Page:16

File Type:pdf, Size:1020Kb

Cornus, Curtisia, Davidia, Diplopanax, Mastixia, and Nyssa Without Any Robust Lineages Among Them IAWA Journal, Vol. 19 (1),1998: 43-97 SYSTEMATIC WOOD ANATOMY OF CORNACEAE AND ALLIES by S. Noshiro l & P. Baas2 SUMMARY The wood anatomy of Comaceae, Alangiaceae, Garryaceae, and Nyssa­ ceae constituting the Comales in the sense of Cronquist (1981, 1988) is described in great detail and subjected to a cladistic analysis. A micro­ scopic identification key to the woods studied is given. The alliance in­ cludes seventeen genera, mostly of trees and shrubs, very rarely herbs. Although wood anatomically fairly homogeneous, variation exists in both qualitative and quantitative characters. Some of the latter show distinct latitudinal trends within individual genera, and character states have only been recognised taking their latitudinal dependencies into ac­ count. The character states ultimately recognised in these continuously varying quantitative characters coincide with intergeneric or intersec­ tional gaps. The cladistic analysis based on a datamatrix with twenty­ one characters (Table 3) and using Cereidiphyllum, Daphniphyllum, and Hamamelis as outgroups yielded a strict consensus tree with a quadrichotomy with two monophyletic clades, Hydrangea panieulata (a representative of the closely allied Hydrangeaceae) and Daph­ niphyllum (Fig. 81). One weakly supported clade includes Alangium, Camptotheea, Cornus, Curtisia, Davidia, Diplopanax, Mastixia, and Nyssa without any robust lineages among them. The other genera, Ara­ lidium, Aueuba, Corokia, Garrya, Griselinia, Helwingia, Melanophylla and Toricellia, constitute a second, well-supported clade. Two Hydran­ gea taxa included in the analysis nest in the second clade and a basal branching respectively. The wood anatomical diversity pattern thus supports a family concept of Comaceae including Cornus, Curtisia, Diplopanax, Mastixia, Alangiaceae, and Nyssaceae, and exclusion of the genera in the other clade. There is remarkable agreement between some of these wood anatomical r~sults and recent cladistic analyses of rbeL sequences by Xiang and co-workers. The infrageneric classifica­ tion of Cornus, Alangium and Nyssa is also discussed. Key words: Comaceae, Alangiaceae, Garryaceae, Nyssaceae, Hydran­ gea, wood anatomy, latitudinal trends, cladistic analysis. 1) Forestry and Forestry Products Research Institute, Tsukuba Norin, P.O. Box 16, Ibaraki 305, Japan. 2) Rijksherbarium/Hortus Botanicus, P. O. Box 9514, 2300 RA Leiden, The Netherlands. Downloaded from Brill.com10/10/2021 08:45:33PM via free access Table 1. Systematic treatment of the Comaceae alliance. 1:1: Cronquist Harms Wangerin Me1chior Hutchinson Takhtajan Eyde Thorne 1982 1898 1910 1967 1967 1997 1988 1992 Cornales Cornaceae Cornaceae U mbelliflorae Araliales Comales Cornaceae Cornales Comaceae Aralidium (Araliaceae) Araliaceae (Aralidiales) Aralidiaceae Aucuba * * * * (Aucubales) Aucubaceae Cornus * * * * * * * Corokia * * * * (Hydrangeales) (Hydrangeales) Curtisia * * * * Curtisiaceae Curtisiaceae Griselinia * * * * (Griseliniales) (H ydrangeales) Helwingia * * * Araliaceae (Helwingales) (Araliales ) Kaliphora * * * (Hydrangeales) (Hydrangeales) Mastixia * * * * Mastixiaceae * * Melanophylla * * * * (Hydrangeales) (Hydrangeales) Toricellia * * * * (Toricelliales) (Araliales) (Diplopanax) Araliaceae Mastixiaceae *1) * Nyssaceae Nyssa * Nyssaceae Nyssaceae Nyssaceae Nyssaceae * * Camptotheca * Nyssaceae Nyssaceae Nyssaceae Nyssaceae * * Davidia * Nyssaceae Davidiaceae Nyssaceae Davidiaceae * * Garryaceae ...... Downloaded fromBrill.com10/10/2021 08:45:33PM Garrya * Garryaceae Garryaceae Garryaceae (Garryales) Garryaceae Alangiaceae ;J>~ '-< Alangium * Alangiaceae Alangiaceae Alangiaceae Alangiaceae Alangiaceae 0 Araliaceae Araliaceae Vitaceae at= Umbelliferae Caprifoliaceae Gunneraceae f-. Haloragaceae Eucommiaceae ~ ...... Icacinaceae \D Cardiopteridaceae -----...... -------_... _-- '-' ...... * = inclusion in Cornaceae, () = exclusion from Cornaceae or Cornales. \D via freeaccess \D 1) Eyde & Xiang 1991. 00 Noshiro & Baas - Systematic wood anatomy of Comaceae 45 INTRODUCTION Comaceae and allies constitute a group oftrees and shrubs (very rarely herbs) which has its main distribution in the northem hemisphere. The circumscription of this alli­ ance has been in constant dispute and varies greatly between systematists (Table 1; cf. also Xiang et al. 1993). Harms (1898) recognised 15 genera in seven subfamilies in his treatment of Comaceae. Wangerin (1910) divided Comaceae into four separate farnilies, Comaceae, Nyssaceae, Alangiaceae, and Garryaceae. In more recent years Cronquist (1981) adopted the family circumscription of Harms (1898) in his Comales and regarded the four families ofWangerin (1910) to constitute the order. Cronquist (1988) later included Nyssaceae in Comaceae following the opinions of Eyde (1988). Hutchinson (1967) included Comaceae, Alangiaceae, Garryaceae, and Nyssaceae to­ gether with Araliaceae and Caprifoliaceae in his Araliales, and Melchior (1964) in­ cluded the four families with Araliaceae and Umbelliferae in his series Umbelliflorae. Dahlgren (1980) and Thome (1992) have the broadest concept of the Comales. Dahlgren included 22 families in his Comales besides the above four families whose constituent genera he placed in eight families. Thome (1992) included four suborders in his Comales, nine families in Comineae, and Davidia, Camptotheea, Nyssa, Di­ plopanax, Mastixia, and Cornus in Comaceae. In contrast, others adopted a much nar­ rower circumscription for Comales or Comaceae. Takhtajan (1997) included only eight genera in his Comales and placed the other nine genera in seven separate orders. He adopted narrower family circumscriptions and established eight families among the nine genera of Comales. Eyde (1988) limited his Comaceae to only six genera, including the latest addition of Diplopanax formerly placed in Araliaceae (Eyde & Xiang 1990). He was not sure of the affinity of Alangium with the Comales, but con­ sidered the other genera to be remotely related. In recent years rbeL sequences of the Comaceae alliance have been analysed (Xiang et al. 1993 and Xiang & Soltis in press) based on the circumscription of the Comales by Cronquist (1981) with the addition of Diplopanax. These results showed a Coma­ ceous clade that included only some genera; the other genera were scattered among several other clades. The Comaceous clade is quite close to the Hydrangeaceae. To obtain results comparable to those of the rbeL sequences, we studied all the genera of Cronquist's Comales, and selected three outgroup genera from the taxa used for the rbeL analyses. The Comales in this study consist of Alangiaceae, Comaceae, Garryaceae, and Nyssaceae (Cronquist 1981). Diplopanax is provisionally included in the Comaceae following Eyde & Xiang (1990). The infrageneric subdivision of the studied genera and species circumscription follows Bloembergen (1939) for Alangium with revi­ sions of nomenclature by Eyde (1968), Murrell (1993) for Cornus, Matthew (1976) for Mastixia, and Dahling (1978) for Garrya. Besides these revisions, we follow Fang (1983) for Chinese Alangium, Ricket (1945) for North American Cornus, Soong (1990) for Chinese Mastixia, Aueuba, and Helwingia, Hu (1990) for Cornus s.l. and Torieellia, Burckhalter (1992) for North American Nyssa, Fang (1983) for Asian Nyssa, and Dudley & Santamour (1994) for Cornus angustata. Downloaded from Brill.com10/10/2021 08:45:33PM via free access 46 IAWA Journal, Vol. 19 (1), 1998 The genus Cornus has been regarded as a single genus in the broad sense or has been subdivided into several genera, and there is as yet no consensus (Murrell1993). In this study we employed the broad genus concept following Eyde (1987). This finds at least some support in the rather uniform wood structure within Cornus S.l. The systematic position of Alangium grisolleoides within Alangiaceae is in dis­ pute. Eyde (1968) included it in sect. Constigma mainly based on fruit structure, but later he doubted his former decision because pollen morphology and wood anatomy suggested a different section (Eyde 1972). After comparing available morphological and chemical characters, Eyde (1988) was still uncertain about its placement within Alangium. According to our observation, wood of this species fits closely with that of sect. Marlea, not only in the type of perforation p1ates, but also in vessel element length and occurrence of paratracheal parenchyma. We therefore treat this species in sect. Marlea. Wood anatomy of the Comales has so far been studied independently within some families, such as Comaceae (Adams 1949), Nyssaceae (Titman 1949), and Garryaceae (Moseley & Beeks 1955), or broadly but using a limited number of twig sampies (Li & Chao 1954). The results ofthese studies were mainly interpreted using the classical Baileyan evolutionary trends of decreasing tracheary element length in advanced taxa, and of correlated changes in other wood anatomical features. Thus taxa with Ion ger andnarrowervessel elements having scalariformperforations with numerous bars were considered primitive (cf. Adams 1949). Majorregional studies of Comales include Kanehira (1926) and Yamabayashi (1938) for Japan and Korea, Tang (1936) forChina, Suzuki et al. (1991) for Nepal, Purkayastha & Bahadur (1977) for India, Moll & Janssonius (1914) and Philipson et al. (1980) for the Malesian region, Patel (1973) for New Zealand, and Sudworth & Mell (1911) and Panshin & De Zeeuw (1980) for North America. These studies are descriptive and do not include systematic analyses. In recent years studies of ecological trends
Recommended publications
  • Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
    TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees.
    [Show full text]
  • Griselinia Littoralis Broadway Mint
    Griselinia littoralis Broadway Mint Griselinia littoralis Broadway Mint Botanical Name: Griselinia littoralis Broadway Mint Common Names: Kapuka, New Zealand Broadleaf, Native: No Foliage Type: Evergreen Plant Type: Hedging / Screening, Shrubs Plant Habit: Dense, Shrub Like, Upright, Upright Narrow Description: Lush, emerald green glossy wavy-leaved tall dense growing shrub perfect for a compact, low hedge. Naturally growing to 4m, the Griselinia hedges well 1-4m tall. Tough, wind tolerant and quick growing, this is also a great choice for screens and coastal plantings. Mature Height: 2-4m Position: Full Sun, Semi Shade Mature Width: 1-2m Soil Type: Loam, Sandy, Well Drained Family Name: TBA Landscape Use(s): Borders / Shrubbery, Coastal Garden, Courtyard, Foliage Feature / Colour, Formal Garden, Hedging / Screening, Park And Gardens, Wind Origin: PacificIslands Break, Container / Pot Characteristics: Pest & Diseases: Foliage Colours: Green Generally trouble free Flower Colours: Insignificant Flower Fragrant: No Cultural Notes: Flowering Season: N/A Fruit: Insignificant Plant Care: Requirements: Annual slow release fertiliser, Keep moist during dry periods, Liquid feed Growth Rate: Moderate Maintenance Level: Low Water Usage: Medium / Moderate Tolerances: Drought: Medium / Moderate Frost: Moderate Wind: Moderate Disclaimer: Information and images provided is to be used as a guide only. While every reasonable effort is made to ensure accuracy and relevancy of all information, any decisions based on this information are the sole responsibility of the viewer. Call 1300 787 401 plantmark.com.au.
    [Show full text]
  • Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
    Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • HELWINGIACEAE 1. HELWINGIA Willdenow, Sp
    Flora of China 14: 227–229. 2005. HELWINGIACEAE 青荚叶科 qing jia ye ke Xiang Qiuyun (向秋云 Jenny Xiang)1; David E. Boufford2 Shrubs, rarely small trees, dioecious, evergreen or deciduous. Leaves simple, alternate, petiolate, stipulate; stipules 2, early deciduous, divided or not; blade margins glandular serrate or crenate; veins pinnate. Inflorescences umbels, sessile, borne on midvein of leaf blade, rarely on petiole of leaves on upper part of young branches. Flowers 3- or 4(or 5)-merous, green or purple-green, uni- sexual; calyx teeth 3 or 4(or 5); petals 3 or 4(or 5); floral disk flat, fleshy. Staminate flowers 3–20 per umbel; stamens 3 or 4(or 5), alternate petals; anther locules 2. Carpellate flowers 1–4 per umbel; style short; stigma lobes 3 or 4(or 5), reflexed; ovary inferior, locules 3 or 4(or 5); ovules 1 per locule, pendulous, apotropous, with dorsal raphe. Fruit berries, drupelike. Seeds (stones) 1–4(or 5), with grooves and ridges when dry, crowned by persistent calyx and style; endosperm smooth; embryo straight. One genus and four species: Bhutan, China, N India, Japan, S Korea, N Myanmar, Nepal, Sikkim, Thailand, N Vietnam; four species (one en- demic) in China. Soong Tzepu. 1990. Helwingia. In: Fang Wenpei & Hu Wenkuang, eds., Fl. Reipubl. Popularis Sin. 56: 20–35. 1. HELWINGIA Willdenow, Sp. Pl. 4: 634, 716. 1806, nom. cons., not Helvingia Adanson (1763). 青荚叶属 qing jia ye shu Shrubs evergreen or deciduous, 1–2 m tall, rarely small trees to 8 m tall. Leaves petiolate; petiole rounded; leaf blade linear-lan- ceolate to broadly ovate, papery, subleathery, or leathery, glabrous or pubescent; veins 5–9, inconspicuous or conspicuous.
    [Show full text]
  • Cornus Florida
    Cornus florida Family: Cornaceae Flowering Dogwood The genus Cornus contains about 40 species which grow in the northern temperate regions of the world. The name cornus is derived from the Latin name of the type species Cornus mas L., Cornelian-cherry of Europe, from the word for horn (cornu), referring to the hardness of the wood. Cornus alternifolia- Alternate Leaf Dogwood, Blue Dogwood, Green-Osier, Pagoda, Pagoda Cornel, Pagoda Dogwood, Pigeonberry, Purple Dogwood, Umbrella-tree Cornus drummondii-Roughleaf Dogwood, Rough-leaved Dogwood Cornus florida- Arrowwood, Boxwood, Bunchberry, Cornel, Dogwood (used bark to treat dog's mange), False Boxwood, Florida Dogwood, Flowering Dogwood, White Cornel Cornus glabrata-Brown Dogwood, Flowering Dogwood, Mountain Dogwood, Pacific Dogwood, Smooth Dogwood, Western Flowering Dogwood Cornus nuttallii-California Dogwood, Flowering Dogwood, Mountain Dogwood, Pacific Dogwood, Western Dogwood, Western Flowering Dogwood Cornus occidentalis-Western Dogwood Cornus racemosa-Blue-fruit Dogwood, Gray Dogwood, Stiffcornel, Stiff Cornel Dogwood, Stiff Dogwood, Swamp Dogwood Cornus rugosa-Roundleaf Dogwood Cornus sessilis-Blackfruit Dogwood, Miners Dogwood Cornus stolonifera-American Dogwood, California Dogwood, Creek Dogwood, Kinnikinnik, Red Dogwood, Red-Osier Dogwood, Red-panicled Dogwood, Redstem Dogwood, Squawbush, Western Dogwood Cornus stricta-Bluefruit Dogwood, Stiffcornel, Stiffcornel Dogwood, Swamp Dogwood The following is for Flowering Dogwood: Distribution North America, from Maine to New York, Ontario, Michigan, Illinois and Missouri south to Kansas, Oklahoma and Texas east to Florida. The Tree Flowering dogwood is well known for its white flower clusters with large white bracts opening in the spring. The fall foliage is bright red. It is a slow growing tree which attains a height of 40 feet and a diameter of 16 inches.
    [Show full text]
  • Meadows Farms Nurseries Japanese Aucuba
    Japanese Aucuba Aucuba japonica Height: 8 feet Spread: 8 feet Sunlight: Hardiness Zone: 6b Other Names: Spotted Laurel Japanese Aucuba foliage Description: Photo courtesy of NetPS Plant Finder An interesting evergreen shrub that solves the problem of the most shaded garden areas; female plants produce berries; ideal as a dense screen; drought tolerant once established Ornamental Features Japanese Aucuba has attractive yellow-spotted dark green foliage. The glossy pointy leaves are highly ornamental and remain dark green throughout the winter. Neither the flowers nor the fruit are ornamentally significant. Landscape Attributes Japanese Aucuba is a dense multi-stemmed evergreen shrub with a more or less rounded form. Its average texture blends into the landscape, but can be balanced by one or two finer or coarser trees or shrubs for an effective composition. This is a relatively low maintenance shrub, and can be pruned at anytime. It has no significant negative characteristics. Japanese Aucuba is recommended for the following landscape applications; - Accent - Mass Planting - Hedges/Screening - General Garden Use Planting & Growing Japanese Aucuba will grow to be about 8 feet tall at maturity, with a spread of 8 feet. It has a low canopy, and is suitable for planting under power lines. It grows at a fast rate, and under ideal conditions can be expected to live for approximately 20 years. This shrub does best in partial shade to shade. It does best in average to evenly moist conditions, but will not tolerate standing water. It is not particular as to soil pH, but grows best in rich soils. It is somewhat tolerant of urban pollution, and will benefit from being planted in a relatively sheltered location.
    [Show full text]
  • From the Late Eocene of Hordle, Southern England
    Acta Palaeobotanica 59(1): 51–67, 2019 e-ISSN 2082-0259 DOI: 10.2478/acpa-2019-0006 ISSN 0001-6594 Fruit morphology, anatomy and relationships of the type species of Mastixicarpum and Eomastixia (Cornales) from the late Eocene of Hordle, southern England STEVEN R. MANCHESTER1* and MARGARET E. COLLINSON2 1 Florida Museum of Natural History, Dickinson Hall, P.O. Box 117800, Gainesville, Florida, U.S.A.; e-mail: [email protected] 2 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom Received 26 October 2018; accepted for publication 29 April 2019 ABSTRACT. The Mastixiaceae (Cornales) were more widespread and diverse in the Cenozoic than they are today. The fossil record includes fruits of both extant genera, Mastixia and Diplopanax, as well as several extinct genera. Two of the fossil genera, Eomastixia and Mastixicarpum, are prominent in the palaeobotanical literature, but concepts of their delimitation have varied with different authors. These genera, both based on species described 93 years ago by Marjorie Chandler from the late Eocene (Priabonian) Totland Bay Member of the Headon Hill Formation at Hordle, England, are nomenclaturally fundamental, because they were the first of a series of fos- sil mastixioid genera published from the European Cenozoic. In order to better understand the type species of Eomastixia and Mastixicarpum, we studied type specimens and topotypic material using x-ray tomography and scanning electron microscopy to supplement traditional methods of analysis, to improve our understanding of the morphology and anatomy of these fossils. Following comparisons with other fossil and modern taxa, we retain Mas- tixicarpum crassum Chandler rather than transferring it to the similar extant genus Diplopanax, and we retain Eomastixia bilocularis Chandler [=Eomastixia rugosa (Zenker) Chandler] and corroborate earlier conclusions that this species represents an extinct genus that is more closely related to Mastixia than to Diplopanax.
    [Show full text]
  • Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
    KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula.
    [Show full text]
  • Taxonomy of Alangium Section Conostigma (Alangiaceae)
    Blumea 62, 2017: 29–46 ISSN (Online) 2212-1676 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/000651917X695164 Taxonomy of Alangium section Conostigma (Alangiaceae) W.J.J.O. de Wilde1, B.E.E. Duyfjes1 Key words Abstract Alangium Lam. sect. Conostigma Bloemb. is largely confined to the Malesian area and contains 19 species. By using the characters as found in the original species-descriptions, and with emphasizing the nature of Alangiaceae the indument of the leaf bud, the confusingly variable Alangium javanicum s.l.-complex could be dismantled for a Alangium sect. Conostigma great part. Four new species: A. ledermannii, A. pallens, A. plumbeum, and A. subcordatum, and two new varieties: Malesia A. meyeri var. macilentum and A. ebenaceum var. insignis are recognised. Two taxa are raised to specific status: new species A. nobile subsp. denudatum to A. denudatum and A. javanicum var. minahassicum to A. minahassicum. A key to taxonomy the species is presented, and the concerned taxa are enumerated, referenced, described and some are figured. Published on 14 February 2017 INTRODUCTION In the present paper we propose to re-instate the majority of names of species formerly described in this complex of A. ja- The section Conostigma is one of the four sections recognised vanicum s.l., but later on sunk into synonymy. Also, some new in Alangium by Bloembergen (1935, 1939). His division into taxa are proposed. Unfortunately, occasional specimens remain sections was later corroborated with anatomical and molecular difficult to determine, and some of the species accepted seem characters (Eyde 1968, Feng et al.
    [Show full text]
  • A DISEASE OP AUCUBA JAPONICA THUNB. CONTENTS. Pag© I
    A DISEASE OP AUCUBA JAPONICA THUNB. CONTENTS. Pag© I Introduction .................................. 1 II History of the Disease and Geographical Distribution ...... 1 III Economic Importance ........................... 2 IV Symptomatology ................................ 2 V Pathological Histology ........................ 6 (a) Stem ........................... 6 (b) Leaf ............................ 7 (c) Root ........................... 9 VI General Observations on the Diseased Tissues .. 10 VII Isolations from Typical Lesions .............. 10 VIII Inoculation Experiments ....................... 16 IX The Organism Associated with Aucuba Necrosis •. 19 (a) Morphology ..................... 19 (b) Staining Reactions ............. 20 (c) Cultural Characters ............ 20 (d) Physiological Properties ....... 22 (e) Technical Description .......... 50 X Action of Bacterial Toxins and Enzymes on Healthy Aucuba Tissue ..... 31 XI Inoculations with Bacterium-free Filtrate ..... 35 XII The Relation of Phomopsis Aucubae Trav. to Disease in Aucuba .... 34 XIII The Pathogenicity of Botrytis Cinerea Pers 37 XIV Experiments with Mixed Inocula ................ 46 XV Discussion .................................... 4?> XVI Summary ........................................ 63 References .................................... 65 Explanation of Plates .............. 66 ProQuest Number: 13905475 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13905475 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 A DISEASE OF AUCUBA JAPONICA THUNB.
    [Show full text]