Manchester Baby Simulator User Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Who Did What? Engineers Vs Mathematicians Title Page America Vs Europe Ideas Vs Implementations Babbage Lovelace Turing
Who did what? Engineers vs Mathematicians Title Page America vs Europe Ideas vs Implementations Babbage Lovelace Turing Flowers Atanasoff Berry Zuse Chandler Broadhurst Mauchley & Von Neumann Wilkes Eckert Williams Kilburn SlideSlide 1 1 SlideSlide 2 2 A decade of real progress What remained to be done? A number of different pioneers had during the 1930s and 40s Memory! begun to make significant progress in developing automatic calculators (computers). Thanks (almost entirely) to A.M. Turing there was a complete theoretical understanding of the elements necessary to produce a Atanasoff had pioneered the use of electronics in calculation stored program computer – or Universal Turing Machine. Zuse had mad a number of theoretical breakthroughs Not for the first time, ideas had outstripped technology. Eckert and Mauchley (with JvN) had produced ENIAC and No-one had, by the end of the war, developed a practical store or produced the EDVAC report – spreading the word memory. Newman and Flowers had developed the Colossus It should be noted that not too many people were even working on the problem. SlideSlide 3 3 SlideSlide 4 4 The players Controversy USA: Eckert, Mauchley & von Neumann – EDVAC Fall out over the EDVAC report UK: Maurice Wilkes – EDSAC Takeover of the SSEM project by Williams (Kilburn) UK: Newman – SSEM (what was the role of Colossus?) Discord on the ACE project and the departure of Turing UK: Turing - ACE EDSAC alone was harmonious We will concentrate for a little while on the SSEM – the winner! SlideSlide 5 5 SlideSlide 6 6 1 Newman & technology transfer: Secret Technology Transfer? the claim Donald Michie : Cryptanalyst An enormous amount was transferred in an extremely seminal way to the post war developments of computers in Britain. -
Hereby the Screen Stands in For, and Thereby Occludes, the Deeper Workings of the Computer Itself
John Warnock and an IDI graphical display unit, University of Utah, 1968. Courtesy Salt Lake City Deseret News . 24 doi:10.1162/GREY_a_00233 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/GREY_a_00233 by guest on 27 September 2021 The Random-Access Image: Memory and the History of the Computer Screen JACOB GABOURY A memory is a means for displacing in time various events which depend upon the same information. —J. Presper Eckert Jr. 1 When we speak of graphics, we think of images. Be it the windowed interface of a personal computer, the tactile swipe of icons across a mobile device, or the surreal effects of computer-enhanced film and video games—all are graphics. Understandably, then, computer graphics are most often understood as the images displayed on a computer screen. This pairing of the image and the screen is so natural that we rarely theorize the screen as a medium itself, one with a heterogeneous history that develops in parallel with other visual and computa - tional forms. 2 What then, of the screen? To be sure, the computer screen follows in the tradition of the visual frame that delimits, contains, and produces the image. 3 It is also the skin of the interface that allows us to engage with, augment, and relate to technical things. 4 But the computer screen was also a cathode ray tube (CRT) phosphorescing in response to an electron beam, modified by a grid of randomly accessible memory that stores, maps, and transforms thousands of bits in real time. The screen is not simply an enduring technique or evocative metaphor; it is a hardware object whose transformations have shaped the ma - terial conditions of our visual culture. -
The Manchester University "Baby" Computer and Its Derivatives, 1948 – 1951”
Expert Report on Proposed Milestone “The Manchester University "Baby" Computer and its Derivatives, 1948 – 1951” Thomas Haigh. University of Wisconsin—Milwaukee & Siegen University March 10, 2021 Version of citation being responded to: The Manchester University "Baby" Computer and its Derivatives, 1948 - 1951 At this site on 21 June 1948 the “Baby” became the first computer to execute a program stored in addressable read-write electronic memory. “Baby” validated the widely used Williams- Kilburn Tube random-access memories and led to the 1949 Manchester Mark I which pioneered index registers. In February 1951, Ferranti Ltd's commercial Mark I became the first electronic computer marketed as a standard product ever delivered to a customer. 1: Evaluation of Citation The final wording is the result of several rounds of back and forth exchange of proposed drafts with the proposers, mediated by Brian Berg. During this process the citation text became, from my viewpoint at least, far more precise and historically reliable. The current version identifies several distinct contributions made by three related machines: the 1948 “Baby” (known officially as the Small Scale Experimental Machine or SSEM), a minimal prototype computer which ran test programs to prove the viability of the Manchester Mark 1, a full‐scale computer completed in 1949 that was fully designed and approved only after the success of the “Baby” and in turn served as a prototype of the Ferranti Mark 1, a commercial refinement of the Manchester Mark 1 of which I believe 9 copies were sold. The 1951 date refers to the delivery of the first of these, to Manchester University as a replacement for its home‐built Mark 1. -
1. Types of Computers Contents
1. Types of Computers Contents 1 Classes of computers 1 1.1 Classes by size ............................................. 1 1.1.1 Microcomputers (personal computers) ............................ 1 1.1.2 Minicomputers (midrange computers) ............................ 1 1.1.3 Mainframe computers ..................................... 1 1.1.4 Supercomputers ........................................ 1 1.2 Classes by function .......................................... 2 1.2.1 Servers ............................................ 2 1.2.2 Workstations ......................................... 2 1.2.3 Information appliances .................................... 2 1.2.4 Embedded computers ..................................... 2 1.3 See also ................................................ 2 1.4 References .............................................. 2 1.5 External links ............................................. 2 2 List of computer size categories 3 2.1 Supercomputers ............................................ 3 2.2 Mainframe computers ........................................ 3 2.3 Minicomputers ............................................ 3 2.4 Microcomputers ........................................... 3 2.5 Mobile computers ........................................... 3 2.6 Others ................................................. 4 2.7 Distinctive marks ........................................... 4 2.8 Categories ............................................... 4 2.9 See also ................................................ 4 2.10 References -
CLUE Rock, Paper, Scissors Game Using Bluetooth Created by Kevin Walters
CLUE Rock, Paper, Scissors Game using Bluetooth Created by Kevin Walters Last updated on 2021-07-28 03:42:04 PM EDT Guide Contents Guide Contents 2 Overview 4 Parts 4 CLUE 4 Circuit Playground Bluefruit with TFT Gizmo 5 Design 6 Rules 6 More than Two Players 6 Flow Diagram 7 User Interface 8 User Interface 8 Choice selection 8 Display on NeoPixels 9 Screens 9 Screen Transitions 10 Sprites 10 TFT Gizmo Detection 12 The Challenge of Detecting the TFT Gizmo 12 Exchanging Choices 14 Cheating 14 Simultaneous Exchange of Player Choices 15 First Idea 15 Third Idea 16 Fourth Idea 16 Fifth Idea 17 Identity and Authentication 18 Networking 19 Connection-oriented and Connection-less Communication 19 Custom Advertisement Packets using ManufacturerData 20 Simple Game 21 Advanced Game 22 Making the List of Players 22 Exchanging Data between Players 23 Scores 26 Multi-player Scoring 26 Score Table Presentation 26 CircuitPython on CLUE 27 Set up CircuitPython Quick Start! 27 CircuitPython on Circuit Playground Bluefruit 29 Install or Update CircuitPython 29 CircuitPython 31 Libraries 31 Libraries for Very Simple Game 31 Libraries for Simple Game 31 Libraries for Advanced Game for CLUE 31 Libraries for Advanced Game for Circuit Playground Bluefruit with TFT Gizmo 32 Libraries for Advanced Game for Circuit Playground Bluefruit only 32 Development Testing 33 Very Simple Game 34 Installation 34 Code 35 Code Discussion 36 Evolving the Game and some History 36 Simple Game 38 © Adafruit Industries https://learn.adafruit.com/rock-paper-scissors-circuitpython -
A Large Routine
A large routine Freek Wiedijk It is not widely known, but already in June 1949∗ Alan Turing had the main concepts that still are the basis for the best approach to program verification known today (and for which Tony Hoare developed a logic in 1969). In his three page paper Checking a large routine, Turing describes how to verify the correctness of a program that calculates the factorial function by repeated additions. He both shows how to use invariants to establish the correctness of this program, as well as how to use a variant to establish termination. In the paper the program is only presented as a flow chart. A modern C rendering is: int fac (int n) { int s, r, u, v; for (u = r = 1; v = u, r < n; r++) for (s = 1; u += v, s++ < r; ) ; return u; } Turing's paper seems not to have been properly appreciated at the time. At the EDSAC conference where Turing presented the paper, Douglas Hartree criticized that the correctness proof sketched by Turing should not be called inductive. From a modern point of view this is clearly absurd. Marc Schoolderman first told me about this paper (and in his master's thesis used the modern Why3 tool of Jean-Christophe Filli^atreto make Turing's paper fully precise; he also wrote the above C version of Turing's program). He then challenged me to speculate what specific computer Turing had in mind in the paper, and what the actual program for that computer might have been. My answer is that the `EPICAC'y of this paper probably was the Manchester Mark 1. -
De-Mythologising the Early History of Modern British Computing. David Anderson
Contested Histories: De-Mythologising the Early History of Modern British Computing. David Anderson To cite this version: David Anderson. Contested Histories: De-Mythologising the Early History of Modern British Com- puting.. IFIP WG 9.7 International Conference on History of Computing (HC) / Held as Part of World Computer Congress (WCC), Sep 2010, Brisbane, Australia. pp.58-67, 10.1007/978-3-642-15199-6_7. hal-01059593 HAL Id: hal-01059593 https://hal.inria.fr/hal-01059593 Submitted on 1 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Contested Histories: De-Mythologising the Early History of Modern British Computing. David Anderson University of Portsmouth, “The Newmanry”, 36-40 Middle Street, Portsmouth, Hants, United Kindom, PO5 4BT Abstract A challenge is presented to the usual account of the development of the Manchester Baby which focuses on the contribution made to the project by the topologist M.H.A. (Max) Newman and other members of the Dept. of Mathematics. Based on an extensive re-examination of the primary source material, it is suggested that a very much more significant role was played by mathematicians than is allowed for in the dominant discourse. -
ALAN TURING: and the TUTORIAL MANCHESTER MARK I Program the Post-War Machine Used for Early Computer Music, JULIET KEMP Chess and Proto-Artificial Intelligence
CODING MANCHESTER MARK I ALAN TURING: AND THE TUTORIAL MANCHESTER MARK I Program the post-war machine used for early computer music, JULIET KEMP chess and proto-artificial intelligence. lan Turing’s work at GCHQ with Colossus WHY DO THIS? during WWII is well-known, as of course is the • Take a trip back to the Turing Test, but those were far from his only 1940s A involvements with early computing developments. In • Search for large prime numbers (very slowly) the late 1940s he was working on designing a • Use the logic that first stored-program computer (Colossus couldn’t store inspired the Turing Test programs, and in any case was still very secret), and in 1948 moved to Manchester where the Manchester Baby and Manchester Mark I were being developed. The Manchester Baby (aka the Manchester Small Scale Experimental Machine) wasn’t a full general- purpose computer, but a small-scale test of Williams tube memory (cathode ray memory, using the charge well created by drawing a dot or dash on the tube). However, it is considered to be the world’s first stored-program computer, running its first program on 21 June 1948, when it found the highest proper divisor of 2^18 (262,144), and took 52 minutes to run. Only two more programs were written for it: an amended One of Turing’s projects while working on the Mark I was version of this, and a program written by Turing to to write code to investigate the Riemann hypothesis, carry out long division. which has to do with the distribution of prime numbers. -