Time-Course of Pyrrolizidine Alkaloid Processing in the Alkaloid

Total Page:16

File Type:pdf, Size:1020Kb

Time-Course of Pyrrolizidine Alkaloid Processing in the Alkaloid Time-Course of Pyrrolizidine Alkaloid Processing in the Alkaloid Exploiting Arctiid Moth, Creatonotos transiens Eva von Nickisch-Rosenegkab, Dietrich Schneider13, and Michael Winka a Universität Heidelberg, Institut für Pharmazeutische Biologie, Im Neuenheimer Feld 364, D-6900 Heidelberg, Bundesrepublik Deutschland b Max-Planck-Institut für Verhaltensphysiologie, D-8130 Seewiesen-Stain'oerg, Bundesrepublik Deutschland Z. Naturforsch. 45c, 881 -8 9 4 (1990); received March 21, 1990 Creatonotos transiens, Pyrrolizidine Alkaloid, Pyrrolizidine Alkaloid-N-Oxide, 7 /?-Heliotrine Conversion, Alkaloid Storage The processing of dietary pyrrolizidine alkaloids by larvae and adults of the arctiid moth Creatonotos transiens was studied in time-course experiments: In larvae, pyrrolizidine alkaloid uptake is quickly followed by the transformation of the alkaloids into their N-oxides. Further­ more, if 7 S-heliotrine is applied, a stereochemical inversion of the hydroxyl group at C 7 to 7 /?-heliotrine can be observed within 48 h of feeding. The rate of this biotransformation is substantially higher in males which use the 7 /?-form later as a precursor for the biosynthesis of 7 /?-hydroxydanaidal, a pheromone. The resorbed pyrrolizidine alkaloids are deposited in the integument within 48 h, where they remain stored during the larval, pupal and partly also the imaginal stages. Virtually no alkaloids are lost during ecdysis. Some pyrrolizidine alkaloids can be recovered from the meconium which is released at eclosion by the imagines especially when disturbed. In the adults pyrrolizidine alkaloids are processed in different ways by the two sexes: In females, about 50-80% of total alkaloids are transferred from the integument to the ovaries and the eggs within 2 -3 days after eclosion. If females mate with alkaloid-rich males they additionally receive with the spermatophore up to 290 |ig pyrrolizidine alkaloid, which are further translocated to the eggs. A biparental endowment of eggs with acquired defence alkaloids is thus achieved. In males, 30-50% of pyrrolizidine alkaloids remain in the integu­ ment; about 10—30% are transferred to the scent organ, the corema, where they are converted into 7 /?-hydroxydanaidal. Another part (about 40%) is passed to the spermatophore. In the laboratory experiments, the sizes of the coremata and their respective 7 /?-hydroxydanaidal contents are strongly dependent on the availability of dietary pyrrolizidine alkaloids during L 6 and especially L7 stages. In the L7 stage even short-term feeding (4-6 h) on Senecio jaco- baea is sufficient to induce large coremata. Introduction Among them are two spccies of the South Asian genus Creatonotos which have an elaborate way to Insect herbivores cope with the plants’ defence cope with pyrrolizidine alkaloids (PA) (for reviews chemistry in various, often species-specific fash­ [5-7]). Pyrrolizidine alkaloids were found to be ions: 1. Polyphagous species often recognize plants phagostimulants for larvae of Creatonotos tran­ which store noxious allelochemicals and avoid siens [2]. Dietary pyrrolizidine alkaloids are re­ them. 2. Polar compounds are often not resorbed sorbed from the gut lumen with the aid of a specif­ but eliminated with the faeces. 3. If resorption ic intestinal carrier system [ 8]. Pyrrolizidine alka­ does take place, most herbivores have efficient de­ loids are then transferred to the larval integument toxicating enzymes. 4. Some herbivores are adapt­ where they remain stored through the subsequent ed to a specific allelochemical and may even use it life stages [9]. When 7 5-heliotrine is applied, a as an acquired defence compound. 5. A few species stereochemical inversion of the hydroxyl group at even have more elaborate ways to exploit the C l into 7Ä-heliotrine takes place [10]. After eclo­ plants’ defence chemicals as pheromone precur­ sion, substantial amounts of pyrrolizidine alka­ sors or morphogens [1-4]. loids are transferred to the ovaries and eggs in A number of arctiid moths (Lepidoptera) are females, whereas in males a smaller part is convert­ known to exploit some dietary allelochemicals. ed into the pheromone, 7/?-hydroxydanaidal [ 11]. Reprint requests to Prof. Dr. M. Wink or Prof. Dr. D. In males, pyrrolizidine alkaloids serve still another Schneider. function (at least in laboratory cultures [ 11]) as a Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen morphogen which induces the full development of 0341-0382/90/0700-0881 $01.30/0 a large abdominal scent organ, the corema [ 12, 13], Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Advancement of Science under a Creative Commons Attribution Creative Commons Namensnennung 4.0 Lizenz. 4.0 International License. 882 E. von Nickisch-Rosenegk et al. • Pyrrolizidine Alkaloid Processing in Creatonotos In this communication we report on the time- sex-specific way: Females were killed by decapita­ course of pyrrolizidine alkaloid processing in lar­ tion and their ovaries were removed. Males were vae and newly hatched imagines of Creatonotos decapitated and their abdomina were subjected to transiens: Emphasis was laid on the question of air pressure so that the coremata became fully in­ the time dependency of 1. the biotransformation flated [13]. After measuring the respective size of of 7 S-heliotrine into 7 Ä-heliotrine and their the corema, the scent organ was cut off and N-oxides, 2. pyrrolizidine alkaloid storage in the weighed on an electronic balance. Animals/tissues integument, 3. the transfer of pyrrolizidine alka­ were stored at -20 °C. loids into the ovaries and eggs in females, 4. the formation of the pheromone 7 /^-hydroxydanaidal in the male corema, 5. the induction of the corema Alkaloid extraction and gas-liquid chromatography anlage, and 5. the possible endowment of females Animals/tissues were ground in a mortar in with pyrrolizidine alkaloids by copulating males. 10 ml 0.5 m HC1. Zinc powder (about 500 mg) was added to reduce pyrrolizidine alkaloid-N-oxides. The homogenates were left standing overnight at room temperature. Next day they were made alka­ Materials and Methods line with 6 m NaOH and poured onto Chem elut columns (Analytichem, ICT, Frankfurt) for solid- Feeding experiments phase extraction. CH 2C12 was used as an eluent. A. Larvae. C. transiens has 7 larval stages, The eluate was collected and evaporated in vacuo. termed LI to L7 in the following. A laboratory Crude pyrrolizidine alkaloid extracts were taken culture of Creatonotos transiens was started with up in MeOH and analyzed by capillary GLC, animals from the Philippines as described in using a Varian 3300 instrument which was equip­ [6- 11] and maintained continuously in captivity ped with a nitrogen-specific detector. Column: for over 14 months. L5 to L7 larvae were kept sin­ DB1, 30 m x 0.3 mm, film thickness 1 |im. GLC gly in Petri dishes and reared on a semiartificial conditions: Oven: 190 °C to 300 °C with 20 °C/ diet (without any antibiotics or preservatives), min, then 5 min isothermal. Injector: 250 °C, split onto which defined amounts of pyrrolizidine alka­ injection (1:20); detectors: 300 °C; carrier gas: loids (7 ^-heliotrine (from Chemasea, Manuf. helium 90 kpascal; make up gas: nitrogen. 1 S- PTY. Ltd., Sydney, Australia)), senecionine or Heliotrine, seneciphylline or senecionine were used seneciphylline (kindly provided by R. Molyneux, as external standards for quantification (Spectra USDA Albany) were given. For some experiments physics integrator SP 4270). Coremata were sus­ leaves of Senecio jacobaea were supplied alterna­ pended in 200 (il ethyl acetate; their extracts were tively. At the intervals mentioned in the tables and analyzed by capillary GLC without further purifi­ figures animals were harvested, dissected into gut cation. 7 ^-Heliotrine and its metabolites were (food residues included), haemolymph, fat body, identified by GLC-MS in previous studies sex organs, and integument, immediately frozen to [10- 12]; in this study these compounds were iden­ -20 °C and stored at this temperature until alka­ tified according to their specific retention indices. loid extraction. Faeces were processed according­ About 1600 insects were treated with alkaloids ly. In parallel experiments we injected defined and later analyzed by capillary GLC for the exper­ amounts (up to 30 (il) of aqueous pyrrolizidine iments described in this publication. All values giv­ alkaloid solutions (adjusted to pH 7) laterally into en in tables or figures are means of measurements the larval haemolymph. Larvae were slightly of 3- 14 animals which were processed individual­ anaesthesized with ether for about 15 sec prior to ly. Pyrrolizidine alkaloid metabolism {i.e. uptake, injection. Before and after the application of biotransformation, storage and degradation) pyrrolizidine alkaloids the animals had no period seems to differ quantitatively between animals. Al­ of starvation. though the larvae were kept under controlled con­ B. Imagines. The time of eclosion was monitored ditions, we could not totally eliminate this varia­ separately for each animal. At the time interval tion (which was not due to extraction or chroma­ given the moths were collected and processed in a tography), even in carefully
Recommended publications
  • A New Species of the Creatonotos Transiens-Group (Lepidoptera: Arctiidae) from Sulawesi, Indonesia
    Bonner zoologische Beiträge Band 55 (2006) Heft 2 Seiten 113–121 Bonn, Juli 2007 A new species of the Creatonotos transiens-group (Lepidoptera: Arctiidae) from Sulawesi, Indonesia Vladimir V. DUBATOLOV* & Jeremy D. HOLLOWAY** * Siberian Zoological Museum of the Institute of Animal Systematics and Ecology, Novosibirsk, Russia ** Department of Entomology, The Natural History Museum, London, U.K. Abstract. A new species from Sulawesi (Celebes), Creatonotos kishidai Dubatolov & Holloway is described. It is cha- racterized by the presence of a sclerotized spine-bearing band which envelops the aedeagus apex, presence of spining on the juxta, and small peniculi (finger-like processes) at the bases of the transtilla, which are longer than in the widespre- ad Oriental C. transiens (Walker, 1855) and shorter than in C. wilemani Rothschild, 1933 from the Philippines. The ho- lotype of the new species is deposited in the Siberian Zoological Museum of the Institute of Animal Systematics and Ecology, Novosibirsk, Russia. Study of a topotype of C. transiens vacillans (Walker, 1855) showed that it is a senior syn- onym of C. t. orientalis Nakamura, 1976. C. ananthakrishanani Kirti et Kaleka, 1999 is synonymized with the nomino- typical subspecies of C. transiens (Walker, 1855). The lectotype of C. transiens (Walker, 1855) is designated in the BMNH collection from “N. India, Kmorah” (misspelling of “Almorah”). Keywords. Tiger-moth, Arctiidae, Arctiinae, Creatonotos, Creatonotos transiens-group, new species, Sulawesi, Indo- nesia. 1. INTRODUCTION The genus Creatonotos Hübner, [1819] 1816 consists of to subgenus Phissama Moore, 1860, the species having a set of unrevised Afrotropical species (GOODGER & WAT- forewings without a streak along the posterior vein of the SON 1995) and seven species from South Asia and neigh- cell, and having short, drawing-pin-like cornuti on the bouring territories.
    [Show full text]
  • Effect of Quinolizidine Alkaloid Consumption and Seed Feeding Behavior on Caterpillar Growth
    Effect of Quinolizidine Alkaloid Consumption and Seed Feeding Behavior on Caterpillar Growth Hannah Hartung Department of Ecology and Evolutionary Biology, University of Colorado Boulder Thesis Defense Date: April 2, 2019 Thesis Advisor: Dr. M. Deane Bowers, Department of Ecology and Evolutionary Biology Committee: Dr. M. Deane Bowers, Department of Ecology and Evolutionary Biology Dr. BarBara Demmig-Adams, Department of Ecology and Evolutionary Biology Dr. Nick Schneider, Department of Astrophysical and Planetary Sciences Abstract Caterpillars who feed on a wide variety of plant hosts must adapt to the defenses of every plant they feed on. For seed-eating caterpillars this can be particularly difficult, because, as the reproductive source for the plant and thus the determinant of how future generations succeed, the seed is one of the most heavily defended bodies on a plant. Helicoverpa zea, the corn earworm, is both a seed eater and a generalist, feeding on plants belonging to over 30 families, including both agricultural crops and native plants, such as Lupinus texensis (Texas bluebonnet). I studied the corn earworm and Texas bluebonnet to answer three questions: i) what is the feeding behavior of these seed eating caterpillars, ii) how do these generalists respond to the presence of quinolizidine alkaloids (QAs) in their seed diet, and iii) what is the fate of these compounds after they are consumed by a generalist caterpillar? I observed that corn earworms exhibit highly variable feeding behavior and travel around the plant to feed from dispersed sources on the plant. In order to understand the effect of plant toxin defense on caterpillar growth, I fed corn earworms on varying concentration diets of Lupinus texensis seeds (containing QAs).
    [Show full text]
  • In the Arctiid Moth Creatonotos Transiens A
    Organ Specific Storage of Dietary Pyrrolizidine Alkaloids in the Arctiid Moth Creatonotos transiens A. Egelhaaf, K. Cölln, B. Schmitz, M. Buck Zoologisches Institut der Universität, Im Weyertal 119, D-5000 Köln 41, Bundesrepublik Deutschland M. Wink* Pharmazeutisches Institut der Universität, Saarstraße 21, D-6500 Mainz, Bundesrepublik Deutschland D. Schneider Max-Planck-Institut für Verhaltensphysiologie, D-8130 Seewiesen/Starnberg, Bundesrepublik Deutschland Z. Naturforsch. 45c, 115-120(1990); received September 25, 1989 Creatonotos, Arctiidae, Pyrrolizidine Alkaloids, Heliotrine Metabolism, Storage Larvae of the arctiid moth Creatonotos transiens obtained each 5 mg of heliotrine, a pyrroli­ zidine alkaloid, via an artificial diet. 7 S-Heliotrine is converted into its enantiomer, 7 Ä-heliotrine, and some minor metabolites, such as callimorphine. IS- and 7 /?-heliotrine are present in the insect predominantly (more than 97%) as their N-oxides. The distribution of heliotrine in the organs and tissues of larvae, prepupae, pupae and imagines was analyzed by capillary gas-liquid chromatography. A large proportion of the alkaloid is stored in the integu­ ment of all developmental stages, where it probably serves as a chemical defence compound against predators. Female imagines had transferred substantial amounts of heliotrine to their ovaries and subsequently to their eggs; males partly directed it to their pheromone biosyn­ thesis. Introduction and -dissipating organ, the corema [6, 7]. The The East-Asian arctiid moth Creatonotos tran­ quantity of this morphogenetic effect is directly de­ siens, is polyphagous and thus also feeds on a pendent upon the dosis, but independent of the number of plants which contain noxious secondary temporal spreading of the feeding program.
    [Show full text]
  • Diversity of Moths (Insecta: Lepidoptera) in the Gupteswarproposed Reserve Forest of the Eastern Ghathill,Koraput, Odisha, India: a Preliminary Study
    Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use. Vol. 11 No. 3 (2018) Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University. Entomology Journal publishes original research papers and reviews from any entomological discipline or from directly allied fields in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution, control of insects, arachnids, and general entomology. www.eajbs.eg.net Citation :Egypt. Acad. J. Biolog. Sci. (A.Entomology) Vol. 11(3)pp: 11-17(2018) Egypt. Acad. J. Biolog. Sci., 11(3): 11-17 (2018) Egyptian Academic Journal of Biological Sciences A. Entomology ISSN 1687- 8809 www.eajbs.eg.net Diversity of Moths (Insecta: Lepidoptera) in the GupteswarProposed Reserve Forest of the Eastern GhatHill,Koraput, Odisha, India: A preliminary Study Sudheer Kumar Jena1, Amar Paul Singh2 and Kritish De2 1-Centre for Biodiversity and Conservation of Natural Resources, Central University of Orissa, Koraput, Odisha 764020, India 2-Department of Landscape level planning & Management, Wildlife Institute of India, Post Box 18, Chandrabani, Dehradun, Utarakhand 248001, India E.Mail :: [email protected] ARTICLE INFO ABSTRACT Article History Diversity of moths (Insecta: Lepidoptera) in the Gupteswar Received:1/5/2018 proposed reserve forest area of Eastern Ghat hill, Koraput district, Accepted:2/6/2018 Odisha, India was studied for the first time. Total 30 species of _________________ moths under 27 genera and 7 families were observed. Highest Keywords: numbers of species and genera were observed under family Eastern Ghat hill, Crambidae, followed by family Geometridae and family Erebidae.
    [Show full text]
  • Exploring Bycatch Diversity of Organisms in Whole Genome Sequencing of Erebidae Moths (Lepidoptera)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458197; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera) Hamid Reza Ghanavi1, Victoria Twort1,2 and Anne Duplouy1,3 1 Department of Biology, Lund University, Lund, Sweden. 2 The Finnish Museum of Natural History Luomus, Zoology Unit, The University of Helsinki, Helsinki, Finland 3 Insect Symbiosis Ecology and Evolution, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Helsinki, Finland Corresponding Author: Hamid Reza Ghanavi Ecology Building, Sölvegatan 37, Lund, Skåne, 22362, Sweden Street Address, City, State/Province, Zip code, Country Email address: [email protected] ORCID: • Hamid Reza Ghanavi: 0000-0003-1029-4236 • Victoria Twort: 0000-0002-5581-4154 • Anne Duplouy: 0000-0002-7147-5199 Abstract Models estimate that up to 80% of all butterfly and moth species host vertically transmitted endosymbiotic microorganisms, which can affect the host fitness, metabolism, reproduction, population dynamics, and genetic diversity, among others. The supporting empirical data are however currently highly biased towards the generally more colourful butterflies, and include less information about moths. Additionally, studies of symbiotic partners of Lepidoptera bioRxiv preprint doi: https://doi.org/10.1101/2021.09.02.458197; this version posted September 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • In the Arctiid Moth Creatonotos Transiens A
    Organ Specific Storage of Dietary Pyrrolizidine Alkaloids in the Arctiid Moth Creatonotos transiens A. Egelhaaf, K. Cölln, B. Schmitz, M. Buck Zoologisches Institut der Universität, Im Weyertal 119, D-5000 Köln 41, Bundesrepublik Deutschland M. Wink* Pharmazeutisches Institut der Universität, Saarstraße 21, D-6500 Mainz, Bundesrepublik Deutschland D. Schneider Max-Planck-Institut für Verhaltensphysiologie, D-8130 Seewiesen/Starnberg, Bundesrepublik Deutschland Z. Naturforsch. 45c, 115-120(1990); received September 25, 1989 Creatonotos, Arctiidae, Pyrrolizidine Alkaloids, Heliotrine Metabolism, Storage Larvae of the arctiid moth Creatonotos transiens obtained each 5 mg of heliotrine, a pyrroli­ zidine alkaloid, via an artificial diet. 7 S-Heliotrine is converted into its enantiomer, 7 Ä-heliotrine, and some minor metabolites, such as callimorphine. IS- and 7 /?-heliotrine are present in the insect predominantly (more than 97%) as their N-oxides. The distribution of heliotrine in the organs and tissues of larvae, prepupae, pupae and imagines was analyzed by capillary gas-liquid chromatography. A large proportion of the alkaloid is stored in the integu­ ment of all developmental stages, where it probably serves as a chemical defence compound against predators. Female imagines had transferred substantial amounts of heliotrine to their ovaries and subsequently to their eggs; males partly directed it to their pheromone biosyn­ thesis. Introduction and -dissipating organ, the corema [6, 7]. The The East-Asian arctiid moth Creatonotos tran­ quantity of this morphogenetic effect is directly de­ siens, is polyphagous and thus also feeds on a pendent upon the dosis, but independent of the number of plants which contain noxious secondary temporal spreading of the feeding program.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Pyrrolizidine Alkaloids Quantitatively Regulate Both Scent Organ Morphogenesis and Pheromone Biosynthesis in Male Creatonotos Moths (Lepidoptera: Arctiidae)
    Journal of J Comp Physiol A (1985) 157:569 577 Sensory, Neural, Comparative and Physiology A ~o.~,o.~.Physiology Springer-Verlag 1985 Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lepidoptera: Arctiidae) Michael Boppr61 and Dietrich Schneider 2 Universit~,t Regensburg, Zoologic, SFB 4/B6, Universitfitsstrasse 31, D-8400 Regensburg 2 M ax-Planck-Institut fiir Verhaltensphysiologie, D-8131 Seewiesen, Federal Republic of Germany Accepted August 13, 1985 Summary. Males of Creatonotos gangis and ondary plant substances of diverse structure found C. transiens possess coremata ('scent organs') of in many plants, particularly in certain Asteraceae, drastically varying sizes (Figs. 2, 3), which release Boraginaceae and Fabaceae (Robins 1982; cf. R(-)-hydroxydanaidal (Fig. 1 A) in varying Boppr6 1986). These substances, when ingested by amounts. Both the size of the organs and their Creatonotos larvae, regulate the development of pheromone content depend on the ingestion ofpyr- the size of the coremata which, in turn, release rolizidine alkaloids (PAs; Fig. 1 B, C) by the lar- hydroxydanaidal (Fig. 1 A) synthesized from the vae. There is a direct correlation between amounts plant-derived growth regulator. This phenomenon of PAs ingested and the size of the organs (Fig. 4). has been recognized by Schneider and Boppr+ It is the absolute amount of PAs ingested which (1981), Schneider et al. (1982) and Boppr6 and determines the expression of corematal size, struc- Schneider (1986), who investigated field-caught turally different PAs have identical effects (Ta- males, and fed larvae with a variety of plants which ble 2); PAs are no essential dietary factors for the either lacked or contained PAs.
    [Show full text]
  • Molecular Systematics of Noctuoidea (Insecta, Lepidoptera)
    TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. AII OSA - TOM. 268 BIOLOGICA - GEOGRAPHICA - GEOLOGICA MOLECULAR SYSTEMATICS OF NOCTUOIDEA (INSECTA, LEPIDOPTERA) REZA ZAHIRI TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2012 From the Laboratory of Genetics, Division of Genetics and Physiology, Department of Biology, University of Turku, FIN-20012, Finland Supervised by: Docent Niklas Wahlberg University of Turku Finland Co-advised by: Ph.D. J. Donald Lafontaine Canadian National Collection of Insects, Arachnids and Nematodes Canada Ph.D. Ian J. Kitching Natural History Museum U.K. Ph.D. Jeremy D. Holloway Natural History Museum U.K. Reviewed by: Professor Charles Mitter University of Maryland U.S.A. Dr. Tommi Nyman University of Eastern Finland Finland Examined by: Dr. Erik J. van Nieukerken Netherlands Centre for Biodiversity Naturalis, Leiden The Netherlands Cover image: phylogenetic tree of Noctuoidea ISBN 978-951-29-5014-0 (PRINT) ISBN 978-951-29-5015-7 (PDF) ISSN 0082-6979 Painosalama Oy – Turku, Finland 2012 To Maryam, my mother and father MOLECULAR SYSTEMATICS OF NOCTUOIDEA (INSECTA, LEPIDOPTERA) Reza Zahiri This thesis is based on the following original research contributions, which are referred to in the text by their Roman numerals: I Zahiri, R, Kitching, IJ, Lafontaine, JD, Mutanen, M, Kaila, L, Holloway, JD & Wahlberg, N (2011) A new molecular phylogeny offers hope for a stable family-level classification of the Noctuoidea (Lepidoptera). Zoologica Scripta, 40, 158–173 II Zahiri, R, Holloway, JD, Kitching, IJ, Lafontaine, JD, Mutanen, M & Wahlberg, N (2012) Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Systematic Entomology, 37,102–124 III Zaspel, JM, Zahiri, R, Hoy, MA, Janzen, D, Weller, SJ & Wahlberg, N (2012) A molecular phylogenetic analysis of the vampire moths and their fruit-piercing relatives (Lepidoptera: Erebidae: Calpinae).
    [Show full text]
  • Erebidae Arctiinae Aglaomorpha Plagiata (Walker, 1855)
    Erebidae Arctiinae Aglaomorpha plagiata (Walker, 1855) Taxonomy: Hypercompa plagiata Walker, 1855: 655.– India. Hostplant Flight period: v, viii-ix. Altitude: 1750-2900 m. Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Alphaea fulvohirta Walker, 1855 Taxonomy: Alphaea fulvohirta Walker, 1855: 684. – India (Sikkim). Hostplant: Flight period: v. Altitude: 2925 m. Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Alphaea imbuta (Walker, 1855) Taxonomy: Arctia imbuta Walker, 1855 : 614.– Himalaya. Estigmene imbuta sikkimensis Roth- schild, 1910: 162.– India (Sikkim) & Bhutan. Hostplant: Flight period: viii. Altitude: 2275 m. Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Alphaea impleta (Walker, [1865] ) Taxonomy: Hypercompa impleta Walker, [1865]: 286.– India. Hostplant: Flight period: v. Altitude: 1555-1975 m. Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Amerila astreus (Drury, 1773) Taxonomy: Sphinx astreus Drury, 1773: 49.– India. Hostplant Flight period: viii-ix Altitude: 875-2900 m. Imago Male genitalia Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Amerila omissa (Rothschild, 1910) Taxonomy: Rhodogastria omissa Rothschild, 1910: 184.– India. Hostplant: Flight period: v. Altitude: 1975 m. Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Areas galactina (van der Hoeven, 1840) Taxonomy: Chelonia galactina van der Hoeven, 1840: 280.- Brazil. Hostplant Flight period: v-vi. Altitude: 340-1750 m. Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Callindra nepos (Leech, 1899) Taxonomy: Callimorpha nepos Leech, 1899: 166.- China. Callimorpha eques (Reich, 1932: 234.- Hostplant Flight period: v. Altitude: 1750-2040 m. Remarks: New for Bhutan (April 2018). Imago Distribution map © Cornelis (Cees) GIELIS, 2018 Erebidae Arctiinae Callindra nyctemerata (Moore, 1879) Taxonomy Hypercompa nyctemerata Moore, 1879: 38.– India.
    [Show full text]
  • Erebidae, Arctiinae) of Central and Northern Laos, Part 4
    Entomofauna carpathica, 2020, 32(2): 47-87 CONTRIBUTION TO THE KNOWLEDGE OF LITHOSIINI AND ARCTIINI (EREBIDAE, ARCTIINAE) OF CENTRAL AND NORTHERN LAOS, PART 4. Karol BUCSEK Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 845 06 Bratislava, Slovak republic; e-mail: [email protected] BUCSEK, K. 2020. Contribution to the knowledge of Lithosiini and Arctiini (Erebidae, Arctiinae) of central and northern Laos, part 4. Entomofauna carpathica, 32(2): 47-87. Abstract: This study is based on material of Lithosiini and Arctiini (Erebidae, Arctiinae) recorded in the Nakai (about 500 m), Bolikhamsai (200–300 m) and Huaphanh (1200–1900 m) areas of central and northern Laos. This fourth part lists 54 species, including descriptions of 4 new species: Teulisna varia n. sp., Microlithosia unicolora n. sp., Danielithosia dubatolovi n. sp. and Poliosia bilineata n. sp. They are listed below 3 new combinations: Teulisna fimbriata n. comb., Cernyia pseudobrevivalva n. comb. and Churinga nigripes n. comb. Key words: Erebidae, Lithosiini, Arctiini, new species, Laos, taxonomy MATERIAL AND METHODS The photos of adults were made with NIKON D700 and SONY DSC-WX220. Genitalia were mounted in microscopic slides using Canada balsam, morphological observations were made using and photographed by Digital USB 2,0 microscope camera (Micro Capture Pro). Subsequently the genitalia were demounted,preserved in glycerine in the test tubes and attached to the corresponding specimen. Post-shooting image processing was done using the software Adobe® Photoshop CS5. Holotypes are stored in the Slovak National Museum, Bratislava, paratypes in the collection of Karol Bucsek. Abbreviations HT – holotype SNM – Slovak National Museum, Bratislava PT – paratype CKB – in coll.
    [Show full text]
  • Taxonomic Account of Erebidae (Lepidoptera: Noctuoidea) Pests of Tea Gardens of West Bengal, India
    Journal of Entomology and Zoology Studies 2015; 3(5): 185-192 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Taxonomic Account of Erebidae (Lepidoptera: JEZS 2015; 3(5): 185-192 © 2015 JEZS Noctuoidea) Pests of Tea gardens of West Bengal, Received: 22-08-2015 Accepted: 26-09-2015 India Olive Biswas Olive Biswas, Suresh Kumar Shah, Purnendu Mishra, Kaushik Mallick, Zoological Survey of India, M-Block, New Alipore, Bulganin Mitra Kolkata- 700053 Abstract Suresh Kumar Shah Tea is a perennial cash crop which is grown at a large scale in Northern parts of West Bengal, India with Zoological Survey of India, M-Block, New Alipore, a great susceptibility to attack of variety of insect pests throughout the year. Regular field surveys were Kolkata- 700053 conducted in tea gardens of West Bengal from 2011 to 2013 with the objectives of collection, Preservation and identification of Lepidopteron pests. The study revealed fourteen adult moth species of Purnendu Mishra the family Erebidae of which two species Arctornis submarginata Walker and Somena scintillans Zoological Survey of India, (Walker) have been found pests. M-Block, New Alipore, Kolkata- 700053 Keywords: Tea, Pest, Lepidoptera, Erebidae, West Bengal Kaushik Mallick 1. Introduction Asutosh College, Post-graduate department of Zoology, Kolkata- Tea (Camellia sinensis L.) is very famous beverage throughout the world. Northern parts of [18] 700026 West Bengal in India is home to 273 tea estates where tea is grown at very large scale . In fact, tea procure a substantial amount of revenue as one of the major cash crops of the country. Bulganin Mitra Tea is perennial plant and hence highly susceptible to the effects of seasonal variations, Zoological Survey of India, diseases attacks and various pests.
    [Show full text]