Cradle to Cradle to Landscape Architecture to Accommodate Expanding Civilizations and Ultimately They Retained No Integrity of a Natural System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix B – Eco-Charrette Report
Appendix B – Eco-Charrette Report 2010 Facility Master Plan Factoria Recycling and Transfer Station November 2010 2010 Facility Master Plan Factoria Recycling and Transfer Station November 2010 Appendix B‐1: Factoria Recycling and Transfer Station ‐ Eco‐Charrette – Final Report. June 24, 2010. Prepared for King County Department of Natural Resources and Parks‐‐ Solid Waste Division. HDR Engineering, Inc. Appendix B‐2: Initial Guidance from the Salmon‐Safe Assessment Team regarding The Factoria Recycling and Transfer Station – Site Design Evaluation. July 15, 2010. Salmon‐Safe, Inc. Appendix B‐1: Factoria Recycling and Transfer Station ‐ Eco‐Charrette – Final Report. June 24, 2010. Prepared for King County Department of Natural Resources and Parks‐‐ Solid Waste Division. HDR Engineering, Inc. Table of Contents PART 1: ECO‐CHARRETTE...................................................................................................................... 1 Introduction and Purpose ......................................................................................................................... 1 Project Background and Setting ................................................................................................................ 1 Day 1. Introduction to the Sustainable Design Process ........................................................................... 3 Day 2: LEED Scorecard Review ................................................................................................................. 4 The LEED Green Building Certification -
BEYOND SUSTAINABILITY THROUGH REGENERATIVE ARCHITECTURE Regenerative Urban Landscapes
BEYOND SUSTAINABILITY THROUGH REGENERATIVE ARCHITECTURE Regenerative Urban Landscapes SAM NEMATI Thesis Report Master of Fine Arts in Architecture and Urban Design Year 5 Studio 12 Tutors: Alejandro Haiek, Carl-Johan Vesterlund, Andrew Bellfild, Tom Dobson Spring 2020 Umeå School of Architecture Umeå University 4640 Words Sam Nemati Thesis Report Spring 2020 Contents Table of Figures ............................................................................................................................................ 2 Abstract ........................................................................................................................................................ 3 Introduction .................................................................................................................................................. 4 Methodology ................................................................................................................................................ 5 CHAPTER 1: Beyond sustainability through regenerative architecture ..................................................... 6 1. Climate Change and Regenerative Architecture ................................................................................... 6 2. Regenerative Architecture in Practice .................................................................................................. 7 2.1. Case Study: Playa Viva, Mexico (2009) .............................................................................................. 8 3. Regenerative -
Putting Regenerative Development Into Action: Understanding the Decision Making Process of a 680 Hectare Regenerative Project
World Sustainable Built Environment Conference 2017 Hong Kong Track 10: Place-making & Community Empowerment Putting Regenerative Development into Action: Understanding the Decision Making Process of a 680 Hectare Regenerative Project Dominique HESa, André STEPHANb, Sareh MOOSAVIc a The University of Melbourne, Australia, [email protected] b The University of Melbourne, Australia, [email protected] c The University of Melbourne, Australia, [email protected] ABSTRACT The built environment is responsible for significant environmental impacts. It is therefore a central research area to balance ecological and built systems and allow them both to thrive. While the majority of previous and existing attempts have targeted minimising environmental impacts, regenerative development goes beyond reduction and aims to restore and support environmental, social and economic flows. Yet, very few projects to date have been able to demonstrate a regenerative outcome. This is because few consulting firms currently offer regenerative design thinking, which is in turn linked to a lack of understanding of processes that support decision making in regenerative development projects. This paper uses a 680 hectares regenerative development project in Gippsland, South East Australia as a case study to investigate how implementing a regenerative development approach from the onset affects the decision-making process. A series of workshops were facilitated by the authors with the local community, indigenous elders, design experts, academics, scientists, government and industry partners and other stakeholders. An online survey consisting of 10 questions was sent to the 40 actors involved and 28 responses were collected (N = 28 and a response rate of 70%). This study provides a contribution to the understanding of both the processes that can support the implementation of innovative regenerative concepts in the built environment and their benefits. -
Multifarious Approaches to Attain Sustainable Fashion
Dr. Nidhi L Sharda is an Associate Professor in the Department of Multifarious Approaches to Knitwear Design at National Institute of Fashion Technology, Bangalore. In Attain Sustainable Fashion the decade and a half of her profes- sional life, she has extensively utilized Dr. Nidhi L. Sharda, Mr. Mohan Kumar VK her applied research which focuses Dept. of Knitwear Design, National Institute of Fashion Technology, Bangalore on the area of apparel and textile [email protected] design. Her applied research focuses on the area of textile and costumes Abstract with research experience in the field Fashion is a huge industry and affects environmental, economic and social system in of natural dyes, sustainable fashion, many ways. Exploitation of resources for ever changing trends in fashion is immense clothing and craft. and providing these demands put enormous pressure on the environment. In such a situation sustainable practices in every human activity has become important and fashion Mr. Mohan Kumar VK is an Assistant is not less affected by this drive. Fashion professionals have to play major role to Professor & Centre Coordinator of the inculcate the concept of sustainable fashion with responsibility in their product line. It Department of Knitwear Design at is important that while designing, designer should understand the benefits of sustain- National Institute of Fashion able operation starting with concept development level. In this paper design solutions Technology, Bangalore. He has 9 years for sustainable fashion are inferred in a design school scenario. The main idea to do so of teaching experience in NIFT. As a is to develop more sensible and responsible designs, which can be better solutions for designer, NIFT being his Alma Mater, sustainable fashion. -
A Guide to Environmentally Sustainable Landscape Architecture Products
A Guide to Environmentally Sustainable Landscape Architecture Products jonite.com/a-guide-to-environmentally-sustainable-and-long-lasting-landscape-architecture-products May 23, 2019 Landscape architects play an essential role in creating design interventions to ensure environmental sustainability. As we’ve explained in our other post on architectural trends that are here to stay (link), sustainability and climate adaptation strategies have not only been increasingly in the focus, but is here to stay. Sustainable architecture aims to incorporate elements of green design into various parts of the building. The main goal is to strike a beautiful harmony between green life and architecture to preserve nature and improve the quality of living. Green buildings are designed in a way to be built in a way that reduces harmful impact on the environment. What is environmentally sustainable design? 1/13 Environmentally sustainable design (or environmentally-conscious design, eco-design) is the philosophy of designing physical objects, the built environment and services to comply with the principles of ecological sustainability. Its core idea is to eliminate wastefulness and minimise environmental impact through architecture design. There are some common principles in sustainable design that most designers take into consideration when scoping out their design projects. They include the following: Choosing low-impact materials: These come in the form of choosing products that have high recycled content incorporated in the manufacturing process. Also, designers may choose materials that are locally sourced to reduce the carbon footprint of transporting materials to the project site. Choosing energy-efficient materials: Designers may also take the time to understand the material’s basic manufacturing processes and make their choice based on the energy involved in producing their selected materials. -
Connecting the Regenerative Food System to Mission-Aligned Services and Sources of Capital
Connecting the regenerative food system to mission-aligned services and sources of capital. 2020 DIRECTORY MID-YEAR UPDATE INDEX Consulting & Services Investment & Financial Services Agroforestry Management LLC . 16 Agro Fund One, Limited . 6 Caspian Farming . 16 Ecosystem Services Market Consortium . 10 Common Threads Consulting . 16 Foodshed Capital . 10 Dalberg Advisors . 16 Grounded Capital Partners . 10 Danielle “Dani” Kusner, CCA . 16 Impact Ag Partners . 7 Edible-Alpha . 16 Iroquois Valley Farmland REIT . 10 Farm Forward . 17 Malaika Maphalala - Natural Food System 6 (FS6) . 17 Investments, LLC . 10 Glynwood Center for Regional Organic & Regenerative Investment Food & Farming . 14 Cooperative (ORICOOP) . 2, 3 Grounded Growth, LLC . 17 Paine Schwartz Partners . 4, 5 Guidelight Strategies . 17 Provenance Capital Group (PCG) . 10 Mercaris . 15 SLM Partners . 8 Propagate Ventures . 17 Transformation LLC . 9 Regenerative Design Group . 18 ValuesAligned Capital . 11 Regenerative Poultry Systems . 12, 13 Regenerative Resources Company . 18 Investors, Foundations & Regen Network . 18 Funders Terra Genesis Internationa . 18 Argosy Foundation . 27 Vayda . 18 World Tree . 18 Real Estate Nature Towns . 27 Farm Inputs & Technology AgLaunch . 24 Research/Education/Advocacy Ag Solutions Network, Inc . 24 Acres U .S .A . 30 Biome Makers . 24 Biodynamic Association . 34 Cargill . 24 Croatan Institute . 34 Haystack Ag . 21 E2, Environmental Entrepreneurs . 34 Marrone Bio Innovations . 19, 20 Great Plains Regeneration . 34 Primary BioAg Innovations & Global Regenerative Food Systems Investment . 31 BioAg Linkages . 24 Regenerative Rising . 34 Soil Works LLC . 22 Rodale Institute . 32 Sound Agriculture . 23 Soil Health Institute . 28, 29 The Redmelon Company . 24 The Land Institute . 33 White Buffalo Land Trust . 34 Farms & Ranches Ciasnocha Family Farms . -
The Henry Ford Collecting Innovation Today Transcript of a Video Oral History Interview with William Mcdonough Conducted Septemb
THE HENRY FORD COLLECTING INNOVATION TODAY TRANSCRIPT OF A VIDEO ORAL HISTORY INTERVIEW WITH WILLIAM MCDONOUGH CONDUCTED SEPTEMBER 8, 2008 WILLIAM MCDONOUGH + PARTNERS CHARLOTTESVILLE, VA ©The Henry Ford 2009 Interviewer: Barry Hurd Producer: Judith E. Endelman McDonough 1-4 combined Cleaned up Final - SL William McDonough Interview PG.2 QUESTION: 01:00:33;07 You were inventing a new water bottle downstairs. WILLIAM MCDONOUGH: 01:00:36;01 Right. QUESTION: 01:00:36;10 What's that? Can you tell us anything about that? WILLIAM MCDONOUGH: 01:00:39;12 They'd shoot me if I did. QUESTION: 01:00:40;13 Oh, (CHUCKLE) okay. Well, could they shoot you after the interview? That way we'll have the information plus. Just tell me what you do around here. This is an amazing place. We were walking around. Just in general what goes on around here. WILLIAM MCDONOUGH: 01:00:51;07 Well, what we have here is an architecture practice on the second floor that does relatively conventional architecture with a sort of green bias. And then up here we have what's called McDonough Consulting which is general consulting to C.E.O.s and to leaders of industry on the Cradle to Cradle ideas, how that works. So that's really pretty much my time and how it's managed, and my book writing, and things like that. William McDonough Interview PG.3 QUESTION: 01:01:24;12 Are you actually drawing blueprints or anything like that? Is that from year's past? Or how does that work? WILLIAM MCDONOUGH: 01:01:29;04 I still sketch on tracing paper. -
244 Project 1 = 10% Sustainability 101 Design Manifesto
244 PROJECT 1 = 10% SUSTAINABILITY 101 DESIGN MANIFESTO WHAT • Write your vision for your career through a personal manifesto. Present it in the form of an 11X17” colour poster. Use concept, layout and typography to share your vision in a unique way. • Your target audience is future industry employers. Imagine that employerw will decide who to hire based on this poster. WHY • To document your understanding of sustainable design and to explore how you see it influencing your future practice. • To practice communicating a message quickly and engagingly in a poster format, using concept, layout, imagery, typography, etc. • To give you an opportunity to implement design principles such as balance, scale, colour, figure/ground and framing. HOW • Review the links to examples of past design manifestos for inspiration. • Consider what you’ve uncovered about sustainable design. What resonates with you? What elements of sustainable design will you apply in your work? • Design a poster that includes your name and demonstrates that you understand the four pillars of sustainability. Write your manifesto in one or several paragraphs. It’s a poster, so keep it to 150 words maximum. • Consider the vernacular and the sensibilities of your target audience. • Consider what kind of design will best reflect you and your personality as a designer. • Combine two different type families in your design, and use at least three levels of type hierarchy. • Consider how to inject your personal voice into the copy itself and the typography. • Sketch different ideas. Revise and refine. • Post a jpg/png of your poster on your blog along and provide a rationale. -
Building for the Future: Sustainable Home Design
Building for the Future Sustainable Home Design John Quale, Assistant Professor and ecoMOD Project Director University of Virginia School of Architecture U.S. Department of Energy environmental impact of buildings electricity usage carbon emissions source: www.architecture2030.org U.S. Department of Energy environmental impact of buildings • the U.S. generates and uses more energy than any other nation; more than half is used in the construction or operation of buildings • the U.S. is the world's largest generator of greenhouse gas emissions • the average single-family home in the U.S. emits more than 22,000 pounds of carbon dioxide each year (from the electricity generated by utilities to run the home, and oil or gas powered appliances and equipment in the home) this is more than twice the amount emitted by the typical American car • each day the sun directly radiates more than 10,000 times the amount of energy required in the world • less than 10 percent of single-family residences are designed by architects; of those, most are for the wealthy U.S. Department of Energy what is green design? design and construction practices that significantly reduce or eliminate the negative impact of buildings on the environment and occupants in five broad areas: . site . water . energy . materials . comfort U.S. Department of Energy how is it measured? energy and water use monitoring utility bills life cycle analysis / assessments post occupancy evaluations carbon neutrality assessments certification processes such as LEED or Energy Star or Earthcraft U.S. Department of Energy who is responsible? clients architects engineers landscape architects planners contractors policy makers government officials U.S. -
WILLIAM Mcdonough, FAIA, Int. FRIBA
WILLIAM McDONOUGH, FAIA, Int. FRIBA William McDonough is a globally recognized leader in sustainable development. McDonough is trained as an architect, yet his interests and infl uence range widely, and he works at scales from the global to the molecular. Time magazine recognized him as a “Hero for the Planet,” noting: “His utopianism is grounded in a unifi ed philosophy that—in demonstrable and practical ways—is changing the design of the world.” In 1996, McDonough received the Presidential Award for Sustainable Development, and in 2003 he earned the fi rst U.S. EPA Presidential Green Chemistry Challenge Award for his work with Shaw Industries. In 2004, he received the National Design Award for exemplary achievement in the fi eld of environmental design. McDonough is the architect of many recognized fl agships of sustainable design, including the Ford Rouge truck plant in Michigan; the Adam Joseph Lewis Center for Environmental Studies at Oberlin College; and NASA’s Sustainability Base, one of the most innovative facilities in the federal portfolio. He currently leads and chairs the World Economic Forum’s Meta-Council on the Circular Economy. McDonough has written and lectured extensively on design as the fi rst signal of human intention. He was commissioned in 1991 to write The Hannover Principles: Design for Sustainability as guidelines for the City of Hannover’s EXPO 2000, still recognized two decades after publication as a touchstone of sustainable design. In 2002, McDonough and the German chemist Dr. Michael Braungart co-authored Cradle to Cradle: Remaking the Way We Make Things, which is widely acknowledged as a seminal text of the sustainability movement. -
Regenerative Architecture: a Pathway Beyond Sustainability Jacob A
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2009 Regenerative Architecture: A Pathway Beyond Sustainability Jacob A. Littman University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Environmental Design Commons, and the Other Architecture Commons Littman, Jacob A., "Regenerative Architecture: A Pathway Beyond Sustainability" (2009). Masters Theses 1911 - February 2014. 303. Retrieved from https://scholarworks.umass.edu/theses/303 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. REGENERATIVE ARCHITECTURE: A PATHWAY BEYOND SUSTAINABILITY A Thesis Presented by Jacob Alexander Littman Submitted to the Department of Art, Architecture and Art History of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF ARCHITECTURE May 2009 Architecture + Design Program Department of Art, Architecture and Art History REGENERATIVE ARCHITECTURE: A PATHWAY BEYOND SUSTAINABILITY A Thesis Presented by Jacob Alexander Littman Approved as to style and content by: ____________________________ Skender Luarasi, Chairperson ____________________________ Ray K. Mann, Member ____________________________ Thom Long, Member ____________________________________ William Oedel, Department Head Department of Art, Architecture and Art History ABSTRACT REGENERATIVE ARCHITECTURE: A PATHWAY BEYOND SUSTAINABILITY MAY, 2009 JACOB LITTMAN, B.A., UNIVERSITY OF MASSACHUSETTS AMHERST M.A., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Skender Luarasi The current paradigm in the field of architecture today is one of degeneration and obsolete building technologies. Regenerative architecture is the practice of engaging the natural world as the medium for, and generator of the architecture. -
Regenerative System Design: Application in the Georgia
REGENERATIVE SYSTEM DESIGN: APPLICATION IN THE GEORGIA PIEDMONT by ANDREW KILINSKI (Under the Direction of Jon Calabria) ABSTRACT In the southeast, our built environment will benefit from the productive and functional ecological systems needed to address impacts on natural systems to support forthcoming population growth, energy, and food production demands. Through precedent study analysis, interpretation, and current regenerative rating systems evaluation, regenerative design principles are applied to a ten-acre urban site in Athens, Georgia, to show how a systems-based design can restore ecological function within the built environment, while meeting energy and food production demands. The design application reveals the components critical to regenerative design, and illustrates how they are applied to a conceptual site design; it may also be utilized as a template for laypersons, landscape architects, or other design professionals interested in regenerative design for urban areas in the built environment. INDEX WORDS: net-positive, permaculture, regenerative design, regenerative development, resilience, sustainability REGENERATIVE SYSTEM DESIGN: APPLICATION IN THE GEORGIA PIEDMONT by ANDREW KILINSKI BLA, UNIVERSITY OF GEORGIA, 2000 MLA, UNIVERSITY OF GEORGIA, 2015 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF LANDSCAPE ARCHITECTURE ATHENS, GEORGIA 2015 © 2015 Andrew Kilinski All Rights Reserved REGENERATIVE SYSTEM DESIGN: APPLICATION IN THE GEORGIA PIEDMONT by ANDREW KILINSKI Major Professor: Jon Calabria Committee: Robert Alfred Vick Thomas Lawrence Kerry Blind Electronic Version Approved: Suzanne Barbour Dean of the Graduate School The University of Georgia August 2015 ACKNOWLEDGEMENTS I would like to thank my family, friends, and co-workers for their support.