A Comparison Between Fieldbuses and Remote I/O for Instruments in the Process Industry

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison Between Fieldbuses and Remote I/O for Instruments in the Process Industry 2007:010 CIV MASTER'S THESIS A Comparison between Fieldbuses and Remote I/O for Instruments in the Process Industry Lars Persson Luleå University of Technology MSc Programmes in Engineering Electrical Engineering Department of Computer Science and Electrical Engineering Division of EISLAB 2007:010 CIV - ISSN: 1402-1617 - ISRN: LTU-EX--07/010--SE Abstract New technology arises in all areas. Some just last for a few years before someone else devel- ops a better technology. This makes it hard to decide whether and when to use new technol- ogy. Being a contractor for the process industry, like Outokumpu Technology, does not make it easier to decide since these systems usually runs for at least 15 years. The aim for this Thesis is to provide information about fieldbus technology for the process industry. Although it has existed for several years far from everyone uses it. The Thesis focus on fieldbuses at instrument level. The knowledge, both of the contractor and the buyer, is of great importance. Both advantages and disadvantages have been identified with fieldbuses that can be used to decide whether to use fieldbuses or not. The examiner of this Thesis was Per Lindgren at Luleå University of Technology I II Preface This Master’s Thesis is the final part required for my Master of Science degree in Electrical Engineering at Luleå University of Technology. The work has been carried out during the winter 2005/2006 at Outokumpu Technology AB in Skellefteå. The aim with this Thesis is to identify advantages and disadvantages with fieldbus technology in Industrial applications. I would like to thank the following persons who have helped me with this Thesis: my supervi- sor Pär Norman at Outokumpu Technology for his time, support and ideas; Leif Nyberg, Manager of the Electrical and automation department at Outokumpu Technology and Per Lindgren at LTU for allowing me to do this Thesis; Leif Karlsson from ABB who has an- swered a lot of my questions; Jan Östensson, Mats Näätsaari and Jan Malmström at Husum and Magnus Normell at Eurocon for the interviews; my sweet girlfriend Freja for proofread- ing and correcting my English; and finally the rest of the staff at Outokumpu Technology for help and support throughout the work on this Thesis. Skellefteå, 17th December 2006 Lars Persson III IV Table of content 1 Introduction ........................................................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Purpose............................................................................................................................. 1 1.3 Delimitations .................................................................................................................... 1 1.4 Outokumpu Technology AB, Skellefteå .......................................................................... 1 2 Method.................................................................................................................................... 3 2.1 Literature review .............................................................................................................. 3 2.2 Interview........................................................................................................................... 3 2.3 Test system....................................................................................................................... 3 3 Literature review................................................................................................................... 5 3.1 Communication levels in a plant...................................................................................... 5 3.2 History.............................................................................................................................. 5 3.3 Fieldbus in general ........................................................................................................... 7 3.4 4-20 mA vs. fieldbus instrument technology ................................................................. 10 3.5 Wireless fieldbus............................................................................................................ 11 3.6 Description of Profibus, Foundation Fieldbus, DeviceNet and Interbus ....................... 13 3.7 Practical experience from fieldbus installations............................................................. 22 4 Interview .............................................................................................................................. 27 4.1 Background .................................................................................................................... 27 4.2 Result.............................................................................................................................. 27 5 Test system........................................................................................................................... 31 5.1 Background and problem ............................................................................................... 31 5.2 Material .......................................................................................................................... 32 5.3 Method ........................................................................................................................... 34 5.4 Result.............................................................................................................................. 34 5.5 Problems......................................................................................................................... 41 6 Result.................................................................................................................................... 43 6.1 Comparing fieldbuses with remote I/O .......................................................................... 43 6.2 Requirement of knowledge ............................................................................................ 43 6.3 Differences between Foundation Fieldbus H1 and Profibus PA.................................... 43 6.4 Wireless fieldbuses......................................................................................................... 44 7 Discussion and Conclusion ................................................................................................. 45 8 Future work ......................................................................................................................... 47 References ............................................................................................................................... 49 Appendix A: AS-Interface (Actuator-Sensor Interface) Appendix B: Test system specification Appendix C: GSD file Appendix D: Interview questions Appendix E: Abbreviations V VI 1 Introduction 1.1 Background The society is constantly developing and changing and therefore we have to adapt to the changes. The automation of metal process industry is no exception. The 4-20 mA analogue standard for instrumentation is still used at most plants in Sweden, but the standard has been around since the 1960’s. However, the time of change seems to have reached the process in- dustry as well. In the early 1990’s, digital communication between instruments and the con- trol system began to develop. Still, new developments, improvements and changes are made every year, making it problematic to decide when to invest time and money into the new sys- tems. It has to be taken into consideration that a control system for the process industry runs for at least 15 years. The research question of this thesis is: is it time for new technology to take over? 1.2 Purpose Outokumpu Technology AB in Skellefteå (OTSk) is currently trying to decide whether the company should learn how to use fieldbuses and recommend it to their costumers. A fieldbus is like a data bus where several devices are connected to the same cable and communicate through digital messages. If the answer to the previous question is yes, which fieldbus should be used? Should OTSk recommend different fieldbuses depending on for example where in the world the installation is taking place? To facilitate the decision, OTSk wants to know which advantages fieldbuses can give regarding installation, operation and maintenance. Ad- ditionally to this, this thesis includes a limited search of wireless fieldbus solutions. The thesis will 1. Identify advantages and disadvantages with fieldbuses compared to remote I/O 2. Describe the differences between the fieldbuses 3. Identify advantages and disadvantages with wireless fieldbuses and make a study of wireless products and their manufacturers. The purpose is not to give a recommendation, but to provide data for decision-making. 1.3 Delimitations Due to time limits, the thesis will only look at four different fieldbuses for field devices. These are DeviceNet, Foundation Fieldbus H1, Interbus and Profibus PA. This thesis will then focus on two of them, Foundation Fieldbus H1 and Profibus PA, since these are operat- ing at the instrument level. To know more about how a fieldbus functions in a plant, visits will be arranged to Husum and ETEK. Interviews will be performed with installation, maintenance and operation personnel at both plants. They are both located near Örnsköldsvik in Sweden. A system was provided by OTSk to evaluate Profibus PA. It included
Recommended publications
  • NESO LT Core Block Diagram NESO LT CPU Type I.MX 257 Core Class ARM 926
    TECHNICAL SPECIFICATION SOLUTIONS THAT COMPLETE! NESO LT Single Board Computer CPU RS-485 CAN NESO LT core Block Diagram NESO LT CPU Type i.MX 257 Core Class ARM 926 ARM 9 Single Board Computer Driver Core Clock 400 MHz 24V/Digital Out i.MX25 4-pole Molex Features 16 KB for Instruktion and data caches Step Down Converter RTC Accuracy: +/- 30 ppm at 25°C GPIO2 DISP0 DAT0 Display RGB Memory 40-pole FFC PMIC Power TSC NAND Flash 256MByte NAND Flash RAM Standard 128 MByte DDR-SDRAM PWM-1 Backlight Battery GPIO-2 Driver Micro SD Card Slot 4 bit MicroSD (HC) CR1220 Operating Systems Battery Supported OS Windows CE 6.0, Linux Yocto PCT Interface RTC RC 1 I2C-3 6-pole FFC Communication Interfaces Digital I/O 1x Digital Out (0.7 A) RS-232 UART-1 Transceiver USBPHY1 Internal USB Network 1x 10/100 Mbit/s Ethernet (RJ-45) 5-pole STL RS-232/RS-485 RS-485 / CAN Fieldbus 1x RS-485 (Half 1x CAN (ISO/DIS 12-pole Molex RS-485 UART-3 duplex) 11898) Transceiver USB-OTG USBPHY1 RS-232 1x RS-232 (RX/TX/CTS/RTS) Flex Type AB CAN CAN Synchronous SPI (10 MBit/s) up to 12 chip selects; I²C, Keypad Keypad USB Serial Interfaces Matrix keypad up to 8 x 8 USBPHY2 20-pole JST Port Type A High-Speed USB 2.0 1x 12 Mbit/s Full Speed Host Micro-SD-Card 1x 480 Mbit/s High Speed OTG ESDHC2 Internal Audio Connector 10-pole Molex Audio Speaker output 1x speaker (connector), 1.0 W RMS (8Ω) UART-4 Audio I2C-2 S/PDIF AUDMUX Expansion Audio Internal 1x speaker connectors parallel to external Codec SPI1 30-pole FFC ESDHC2 output, Line In, Line Out, MIC In owire_LINE Display and Touch Line Out Display Interface TTL up to 24 bit (RGB) Audio EIM SDRAM Touch Interface 4-wire analog resistive; PCAP I²C 2x Speaker Amplifier 2-pole JST NAND Backlight Interface 42.5 mA Backlight drives EMI NANDF Flash Device Dimensions RJ-45 Ethernet W x H x D 113.8 x 18.0 x 47.3 mm FEC Jack Phy Weight 51g Power Supply Supply Voltage Nom.
    [Show full text]
  • Allgemeines Abkürzungsverzeichnis
    Allgemeines Abkürzungsverzeichnis L.
    [Show full text]
  • IO-Link Instead of Fieldbus
    APPLICATIONS SENSOR TECHNOLOGY IO-Link Instead of Fieldbus Laempe Mössner Sinto GmbH uses IO-Link in a new core shooter machine and achieves shorter cycle times with Turck’s QR24-IOL IO-Link encoder “When I first read about it, I thought: please don’t add the few manufacturers of core shooters worldwide. The another fieldbus system. Today I know that IO-Link isn’t machines produce sand cores for metal casting. If, for a fieldbus but quite the opposite. In many areas, example, the casting of an engine block is required, IO-Link means for us the end of bus systems because it cores are placed inside the casting mold to later makes communication simple once again,” explains produce the cavities of the engine. The cores are “shot” Tobias Lipsdorf, controller programmer at foundry from a binder sand mixture with compressed air into a machinery manufacturer Laempe Mössner Sinto mold – the core box – at a high speed between 0.3 and GmbH. When the engineer talks about the IO-Link 0.5 seconds. The mold mixture is then hardened in the intelligent communication standard, you get a sense of closed core box using process gas or heat and can then genuine enthusiasm – so too with his colleague Andre be removed. After casting, the binder loses its hard- Klavehn, who is responsible for the electrical planning. ness due to the heat from the filled melt. The cores The two of them jointly redesigned the electrical disintegrate, the sand can be removed from the cast, planning of the new machine generation and imple- leaving behind the required internal contour.
    [Show full text]
  • An Introduction to Integrated Process and Power Automation
    Power Up Your Plant An introduction to integrated process and power automation Jeffrey Vasel ABB, Inc. June 30, 2010 Rev 1 Abstract This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Often referred to as Electrical Integration, Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. Emphasis is placed on tying the IEC 61850 substation automation standard with the process control system. The energy efficiency gains from integration are discussed in a power generation use case. In this use case, energy efficiency is explored with integrated variable frequency drives, improved visibility into power consumption, and energy efficiency through faster plant startup times. Demonstrated capital expenditure (CAPEX) savings is discussed in a cost avoidance section where a real world example of wiring savings is described. Lastly, a power management success story from a major oil and gas company, Petrobras, is discussed. In this case, Petrobras utilized integrated process and power automation to lower CAPEX, operational expenditure (OPEX), and explore future energy saving opportunities. Executive Summary Document ID: 3BUS095060 Page 1 Date: 6/30/2010 © Copyright 2010 ABB. All rights reserved. Pictures, schematics and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. Executive Summary Document ID: 3BUS095060 Page 2 Date: 6/30/2010 © Copyright 2010 ABB.
    [Show full text]
  • What's New from the OPC Foundation?
    Interoperability on the Next Level: OPC-Unified Architecture JAI2010 18.11.2010 – Vigo Stefan Hoppe President OPC Europe [email protected] Agenda • Introduction OPC Foundation • OPC UA details • Advantages of Combined Standards • Demo OPC Foundation • International Industry Standard Organization • OPC Foundation • 407+ Member Companies / 80+ end-users Members • OPC Portfolio • 3500 + Total Companies Build OPC Products = 22000 + Products • OPC UA details • Millions & Millions of OPC Installations • Cooperation • The vision of OPC is secure reliable multi-vendor multi-platform interoperability • for moving information vertically from the data sources through the enterprise of multi-vendor systems (with stops in between…) • For moving information horizontally between data sources on different industrial networks from different vendors; • Not just data but information……. • Reliable, Secure Interoperability is not an option • Collaboration is key to incorporating many multiple “open” standards into an unified open platform architecture World Membership Demographics • OPC Foundation OPC Members By Region • OPC Portfolio • OPC UA details Rest of World , • Cooperation 41 China , 5 China Europe North America Europe , 216 Japan , 142 North America Rest of World Japan , 36 OPC Board of Directors • Reinhold Achatz, Siemens • OPC Foundation • OPC Portfolio Reinhold has been on the OPC Board of Directors longer • OPC UA details than any other board member, he is the founding member for Siemens on the Board of Directors (1997) • Cooperation
    [Show full text]
  • Installing Fieldbus Installing Fieldbus
    Installing Fieldbus Installing Fieldbus Many automation engineers are coming face-to-face Figure 1. Standard FOUNDATION fi eldbus™ Segment. with fi eldbus applications for the fi rst time. Fieldbus (the use of digital communications for distributed Operator instrumentation and control networks) is an established Workstation technology with many benefi ts. However, fi eldbus installations require some additional considerations over and above traditional 4-20mA projects. High Speed Ethernet Choosing a “Fieldbus” Control System Fieldbus is a generic term for a variety of with H1/PA communications protocols using various media, but Interface all are simply a means to an end. What you want DC Power at commission of the project is a satisfactory and Input functional control system, and it is likely you will need Fieldbus DC to use multiple fi eldbuses to accomplish the many tasks Power Supply (Conditioner) required. For example, you may use FOUNDATION 350-500mA (Not Required for fi eldbus™ for process control, DeviceNet for discrete Fieldbus T PA Systems; May Be I/O, and PROFIBUS DP for motor drives. Every DCS Terminator with the Control System Interface) can easily integrate all of these functional plant buses into the control room Ethernet-based network. FOUNDATION fieldbus H1 or PROFIBUS PA In the process control world, “fi eldbus” usually Network (Twisted Wire Pair) 1,900m (6,233 ft) Maximum means FOUNDATION fi eldbus H1 or PROFIBUS PA. Segment Length Including Both are widely used around the world in refi neries Spur Lengths and process plants as modern day enhancements to Fieldbus Trunk Out traditional 4-20mA designs.
    [Show full text]
  • Kbox Tech Spac Sheet
    KBox Family IOT GATEWAYS/ EMBEDDED BOX PC About Kontron – Member of the S&T Group IOT GATEWAYS/EMBEDDED BOX PC The KBox A-series is designed for a variety of applications in The KBox B-Series is based on Kontron’s mini-ITX mother- Kontron’s KBox C-Series is designed for the industrial control The KBox E-Series provides rugged, fanless, sealed and the industrial environment. It comprises intelligent IoT gate- cabinet environment. Based on COMe modules the KBox compact design for easy embedded into a custom housing or Kontron is a global leader in IoT/Embedded Computing Technology ways for edge analytics or remote monitoring as well as CPUs. Kontron’s KBox B-Series can be used for various C-Series is highly scalable and ensures simple upgrades as a stand-alone device, to fulfill requirements for fog portfolio of secure hardware, middleware and services for Internet of systems for control and process optimization. All systems applications such as medical, gaming, process control, - computing, edge analytics and real time control in a variety of Things (IoT) and Industry 4.0 applications. With its standard products feature a fanless design which ensures a significantly pro- wherever high performance is needed. tions guarantees mounting even when space is limited. industrial applications. and tailor-made solutions based on highly reliable state-of-the-art . embedded technologies, Kontron provides secure and innovative d e ; z i e t longed lifespan and high system availability. With its broad range of interfaces, various storage capabili- n a g applications for a variety of industries.
    [Show full text]
  • Foundation Fieldbus Overview
    FOUNDATIONTM Fieldbus Overview Foundation Fieldbus Overview January 2014 370729D-01 Support Worldwide Technical Support and Product Information ni.com Worldwide Offices Visit ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events. National Instruments Corporate Headquarters 11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100 For further support information, refer to the Technical Support and Professional Services appendix. To comment on National Instruments documentation, refer to the National Instruments website at ni.com/info and enter the Info Code feedback. © 2003–2014 National Instruments. All rights reserved. Legal Information Warranty NI devices are warranted against defects in materials and workmanship for a period of one year from the invoice date, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor. The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from the invoice date, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free. A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work.
    [Show full text]
  • Hacking the Industrial Network
    Hacking the industrial network A White Paper presented by: Phoenix Contact P.O. Box 4100 Harrisburg, PA 17111-0100 Phone: 717-944-1300 Fax: 717-944-1625 Website: www.phoenixcontact.com © PHOENIX CONTACT 1 Hacking the Industrial Network Is Your Production Line or Process Management System at Risk? The Problem Malicious code, a Trojan program deliberately inserted into SCADA system software, manipulated valve positions and compressor outputs to cause a massive natural gas explosion along the Trans-Siberian pipeline, according to 2005 testimony before a U.S. House of Representatives subcommittee by a Director from Sandia National Laboratories.1 According to the Washington Post, the resulting fireball yielded “the most monumental non-nuclear explosion and fire ever seen from space.”2 The explosion was subsequently estimated at the equivalent of 3 kilotons.3 (In comparison, the 9/11 explosions at the World Trade Center were roughly 0.1 kiloton.) According to Internet blogs and reports, hackers have begun to discover that SCADA (Supervisory Control and Data Acquisition) and DCS (Distributed Control Systems) are “cool” to hack.4 The interest of hackers has increased since reports of successful attacks began to emerge after 2001. A security consultant interviewed by the in-depth news program, PBS Frontline, told them “Penetrating a SCADA system that is running a Microsoft operating system takes less than two minutes.”5 DCS, SCADA, PLCs (Programmable Logic Controllers) and other legacy control systems have been used for decades in power plants and grids, oil and gas refineries, air traffic and railroad management, pipeline pumping stations, pharmaceutical plants, chemical plants, automated food and beverage lines, industrial processes, automotive assembly lines, and water treatment plants.
    [Show full text]
  • AIT Presentation
    Distributed Sensors & Connectivity as the answer to future grid requirements Karl-Heinz Mayer Director Engineering Innovation & Program Management AIT Industry Day – September 11th, 2015 © 2015 Eaton Corporation. All rights reserved. Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon 2 © 2015 Eaton Corporation. All rights reserved. 2 Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon • Climate changes are requesting less CO2 emission despite the worldwide increase of power demand Green Energy; programs for ISO 50001, LEED,…certifications 3 © 2015 Eaton Corporation. All rights reserved. 3 Power business – status quo • Electricity is still the backbone and driver of mankind‘s productivity – this seems not to be changed soon • Climate changes are requesting less CO2 emission despite the worldwide increase of power demand Green Energy; programs for ISO 50001, LEED,…certifications • Consumer – Prosumer transformation requests new system approaches Virtual power plants 4 © 2015 Eaton Corporation. All rights reserved. 4 Technology trends are lowering the hurdles to develop and connect more intelligent devices • Semiconductor component costs continue to decline • Functionality and power management performance improving • Pervasiveness of communications increasing • Cloud services and development tools are being used more and more…and their costs are dropping dramatically with scale 5 © 2015 Eaton Corporation. All rights reserved. 5 Future challenges 1. Growing Electricity 2. Electricity Peak 3. Increasing Variable 4. Increasing Demand & Ageing Management Energy Generation Integration of Electric Infrastruture Vehicle World Energy Consumption by fuel type, 1990-2040 - Source : EIA (2013) 6 © 2015 Eaton Corporation.
    [Show full text]
  • FOUNDATION Fieldbus Design Considerations Reference Manual
    Reference Manual PlantPAx Process Automation System: FOUNDATION Fieldbus Design Considerations Catalog Numbers 1757-FFLDx, 1757-FFLDCx Important User Information Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable. In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams. No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual. Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited. Throughout this manual, when necessary, we use notes to make you aware of safety considerations. WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.
    [Show full text]
  • SMART HOME SYSTEMS with the Contribution Of
    Branko Dvoršak Juraj Havelka Elena Mainardi Hrvoje Pandžić Tea Selič Mario Tretinjak SMART HOME SYSTEMS With the contribution of: Vanja Husein Claudia Pacchiega Goran Švast 2 This publication is part of the SHVET project (https://www.smart-hvet.eu/), and has been made possible with the contribution of (in alphabetical order): Center Republike Slovenije za poklicno Izobraževanje (Slovenia) Centoform (Italy) Ecipa Nordest (Italy) Območna Obrtno-Podjetniška zbornica Krško (Slovenia) Obrtničko učilište – ustanova za obrazovanje odraslih (Croatia) Šolski center Novo mesto (Slovenia) Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva (Croatia) This project has been funded with support from the European Commission. This publication reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein. 3 TABLE OF CONTENTS page 1 INTRODUCTION 4 1.1 WHAT EXACTLY IS A "SMART HOUSE" 5 1.2 HOME AND BUILDING AUTOMATION 6 1.3 FUNCTIONS YOU CAN DO WITH A SMART HOME SYSTEM 6 2 DIFFERENCE BETWEEN A SMART HOME SYSTEM AND A STANDARD ELECTRIC PLANT 13 2.1 ELEMENTS OF A CLASSIC RESIDENTIAL INSTALLATION 13 2.2 STRUCTURE OF A SMART HOME SYSTEM 18 2.3 MODULES OF A SMART HOME SYSTEM 20 3 SMART HOME SYSTEM TECHNOLOGIES 26 3.1 OVERVIEW OF AUTOMATION AND CONTROL TECHNOLOGIES 25 3.2 WHY KONNEX 28 4 KONNEX 30 4.1 HISTORY OF KNX/EIB AND KONNEX ORGANIZATION 30 4.2 TRANSMISSION MEDIA 30 4.3 NET ARCHITECTURE 32 4.4 TOPOLOGY 35 4.5 ADDRESSES 36 4.6 TELEGRAM 38 4.7 PARAMETERIZATION
    [Show full text]