Trichopodus Pectoralis

Total Page:16

File Type:pdf, Size:1020Kb

Trichopodus Pectoralis Biotechnological Communication Biosc.Biotech.Res.Comm. Vol 13 Number (1) Jan-March 2020 Pp-23-29 Feasibility of Edible Coating, Storage Temperature and Packaging for Rancidity and Proteolytic Activity of Dry-Salted Snakeskin Gourami, Trichopodus pectoralis Minh Phuoc Nguyen Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam ABSTRACT Snakeskin gourami (Trichopodus pectoralis) has been considered as a valuable and suitable species for breeding in fresh and brackish water regions in Vietnam. It has a high meat yield and favouritely consumed as dry-salted fish. However the dry-salted snakeskin gourami quality has gone down very fast owing to rancidity and proteolytic activity because it has high fat content and protease in its abdomen. It’s necessary to have an appropriate processing and preserving approach to accelerate its commercial value in local and international markets. Edible coating supports a natural cover on the product surface to control weight loss, oil rancidity and solute movements. Biodegradability, edibility and barrier attributes are some benefits of edible coating superior to plastic bag. Storage temperature and packaging procedure affected the rancidity and proteolytic activity in the dry-salted snakeskin gourami (Trichopodus pectoralis). Purpose of this research demonstrated the efficacy of carrageenan coating on storage of dry-salted snakeskin gourami (Trichopodus pectoralis). The dried snakeskin gouramis were coated by various concentrations of carrageenan (0.5%, 0.75%, 1.0%, 1.25%, 1.5%). The efficacy of carrageenan coating was defined via quality indicators of dry-salted snakeskin gouramis such as fat rancidity: Peroxide value (mEqO2/ kg), Thiobarbituric acid (mg maloaldehyde/ kg); proteolytic changes: total volatile base (TVB-N, mg N/100 g) nitrogen content and trimethylamine (TMA, mg N/100 g). In 3 month-interval, all coated samples were periodically analyzed during 12 months of preservation at ambient condition. Results showed that the carrageenan coating of 1.25% w/w, packed in vacuum bag and stored at 4oC could avoid microbial decomposition and fat oxidation of the dry-salted snakeskin gouramis. From this investigation, the dry-salted snakeskin gouramis had shelf-life at ambient storage for 12 months without deterioration. The research implied that the edible coating would be ideal to extend the stability of this valuable oil fish by inhibition of proteolytic reaction, reduction of fat rancidity and enhancement of overall acceptance. KEY WORDS: TRICHOPODUS PECTORALIS, CARRAGEENAN, PROTEOLYTIC reaction, RANCIDITY, stabiLITY. ARTICLE INFORMATION *Corresponding Author: [email protected] Received 13th Jan 2020 Accepted after revision 29th Feb 2020 Print ISSN: 0974-6455 Online ISSN: 2321-4007 CODEN: BBRCBA Thomson Reuters ISI Web of Science Clarivate Analytics USA and Crossref Indexed Journal NAAS Journal Score 2020 (4.31) SJIF: 2019 (4.196) A Society of Science and Nature Publication, Bhopal India 2020. All rights reserved Online Contents Available at: http//www.bbrc.in/ 23 DOI: 10.21786/bbrc/13.1/5 Nguyen INTRODUCTION et al., 2010). The effects of chitosan and different organic acid on fresh Japanese sea bass fillets were studied Snakeskin gourami (Trichogaster pectoralis) is one of (Qiu et al., 2014). Quality characteristics of Japanese the most common fish in paddy fields and rivers of sea bass (Lateolabrax japonicus) during refrigerated Vietnam. It lives in waters at low dissolved oxygen and storage were affected by e-polylysine, sodium alginate high organic accumulation and feeds on zooplankton, and e-polylysine/sodium alginate (Cai et al., 2015). The crustaceans and insect larvae (Jafaryan et al., 2014). effectiveness of edible chitosan coating on the quality It achieves good maturity stages after 3 months of changes of Indian oil sardines (Sardinella longiceps) was rearing. It has a high meat yield and is consumed as studied by Mohan et al. (2102). a dried fish in Vietnam. Farming area of snakeskin gourami has been opened dramatically in recent years Several studies mentioned to the processing and offering attractive income for local farmers (Minh et al., preservation of snakeskin gourami. The effect of 2019). The aquaculture sector contributes an important various salt concentrations and other soluble elements source of nutritious food for human consumption. Fish on the moisture content and water activity (aw) of and fishery products are among the most important dried snakeskin fish was studied (Muoi et al., 2008). agricultural commodities (Bharda et al., 2017). This The influence of sorbitol and ethanol on the water species is considered as an alternative species to shrimp activity and quality changes of dried snakeskin fish farming in rainy season. They are good sources of was examined (Truc et al., 2009). Ethanol treatment to proteins, macro-nutrients, minerals and some vitamins. eliminate fishy ordor; addition of salt, sorbitol, as well The mineral elemental levels and vitamins of this species as dry temperature that affected to to water activity is a function of the availability preferential accumulation. (aw), microbial load (coliform, cfu/g), sensory score of Aquaculture of P. elongatus in the Ca Mau province dried snakeskin gourami (Trichogaster pectoralis) were (Vietnam) has developed rapidly during the past decade thoroughly investigated. Shelf-life of the dried product due to relatively high demand and high marketable value was also evaluated during preservation (Minh et al., (Minh et al., 2019). 2019). At death, the pH value in fish muscle begins to decrease In Vietnam, the snakeskin gourami P. elongatus is a high due to formation of lactic acid from glycogen via a value species and has high potential for aquaculture series of enzymatic reactions in the muscles. Enzymes in the Mekong Delta. P. elongatus aquaculture has from spoilage microorganisms produce different volatile developed rapidly to supply the high demand of compounds causing bad smell. The combination of domestic consumers. However there was not any research ammonia (NH3) and TMA in fish is accounted for the mentioned to the investigation of carrageenan coating total volatile base (TVB-N) nitrogen content of the fish to the dry-salted snakeskin gouramis (Trichopodus and is normally considered as an indicator of quality pectoralis) as well as the effect of storage temperature decomposition. With the proliferation of spoilage and packing procedure to oil rancidity and proteolytic bacteria after death in fish, a subsequent increase in activity. Purpose of this research was to demonstrate the TMAO reduction to TMA happens. On the other hand, feasibility of carrageenan coating, storage temperature the increase in the TVB-N is mainly created by the and packaging procedure in prolonging product quality formation of TMA, which is prevalent in spoiled fish of dried snakeskin gouramis (T. pectoralis). Coatings can that have TMAO (mainly in marine pelagic fish) and is be considered as a barrier to protect against discoloration, the most common cause of fishy odor. Aeromonas spp., degradation and oxidative rancidity. psychrotolerant Enterobacteriaceae, Photobacterium phosphoreum, Shewanella putrefaciens-like organisms MATERIAL AND METHODS and Vibrio spp. are the bacteria that are able to reduce TMAO to TMA (Heising et al., 2014). Material: Snakeskin gourami (Trichopodus pectoralis) were harvested from Ca Mau province, Vietnam. After Rancidity is a matter in fatty fish related to the dried harvesting, they were cooled below 4oC and moved to preservation. Indeed, the shelf-life of dried fatty fish laboratory as soon as possible for further experiments. usually ends with the onset of rancid flavors. The speed They were washed and sanitized under washing tank of hydroperoxide formation strongly relates to fat having 20 ppm per acetic acid with air bubble blowing oxidation in its early stages. Aldehydes, ketones and to remove foreign matters. Besides snakeskin gourami similar compounds are the secondary products which we also used other material during the research such as form as the hydroperoxides react. The reactions lead per acetic, salt, carrageenan. Lab utensils and equipment to aldehydes and other products that can be evaluated included digital weight balance, Rotronic, stomacher, using the thiobarbituric acid (TBARS) test (Turienzo incubator, colony counter, and dry oven. Oil rancidity et al., 2011). There were several notable researches of dry-salted snakeskin gouramis was carried out by mentioned to application of edible coating in fishes carrageenan coating during storage: They were soaked to control oxidation and proteolytic change. Whey in 20 minutes with solution containing 4.0% salt, 1.0% proteinbased coatings delayed lipid oxidation of salmon sugar, 0.1% monosodium glutamate, 0.5% garlic extract, fillets (Turienzo et al., 2011). The chitosan coatings and 0.5% honey. After that they were dried at 50oC to 18% packaging might have been sufficient to retard lipid moisture content. Various carrageenan concentrations oxidation in lingcod (Ophiodon elongates) fillets (Duan were verified (0.5%, 0.75%, 1.0%, 1.25%, 1.5%) on BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS RANCIDITY AND PROTEOLYTIC ACTIVITY OF DRY-SALTED SNAKESKIN GOURAMI, 24 Nguyen the dry-salted snakeskin gouramis. Oil rancidity was by 1,1,3,3-tetraethoxypropane (Torres-Arreola et al., evaluated by Peroxide value (mEqO2/ kg), Thiobarbituric 2007). Standard methods recommended by Food and acid (mg maloaldehyde/ kg). All coated
Recommended publications
  • Freshwater Inventory March 28
    African Clawed Frogs Endler's Livebearer Panda Loach Albino Rainbow Shark Fahaka Puffer Panda Platy Archer Fish Fancy Guppies Panda Tetra Peacock Gudgeon Assassin Snail Festae Red Terror Florida Assorted African cichlid Figure Eight Puffer Pearl Leeri Gourami Assorted Angels Firecracker Lelupi Peppermind Pleco L030 Assorted Balloon Molly Firemouth Cichlid Pheonix Tetra Powder Blue Dwarf Assorted Glofish Tetra Florida Plecos Gourami Assorted Lionhead Geophagus Brasiliensis Purple Rose Queen Goldfish Cichlid Cichlid Assorted Platy German Blue Ram Rainbow Shark Red and Black Oranda Assorted Ryukin Goldfish German Gold Ram Goldfish Australian Desert Goby Giant Danio Red Bubble eye Goldfish Australian Rainbow Glass Cats Red Eye Tetra Bala Shark GloFish Danio Red Paradise Gourami BB Puffer Gold Dojo Loach Red Phantom Tetra Gold Firecracker Black Lyretail Molly Tropheus Moori Red Pike Cichlid Black Moor Goldfish Gold Gourami Red Tail shark Black Neon Tetra Gold Severum Red Texas Cichlid Black Phantom Tetra Assorted Platy Redfin Blue Variatus Gold White Cloud Redfin Copadichromas Black Rasbora Het Mountain Minnow Borleyi Cichlid Black Ruby Barb Golden Wonder Killie Redtail Black Variatus Green Platinum Tiger Redtail Sternella Pleco Black Skirt Tetra Barb (L114a) Blackfin Cyprichromis Redtop Emmiltos Cichlid Leptosoma Cichlid Green Texas Cichlid Mphanga Green Yellow Tail Blehri rainbow Dwarf Pike Cichlid Ribbon Guppies Blood Red Parrot Haplochromis Cichlid Obliquidens Cichlid Roseline Shark Heterotilapia Blue Dolphin Cichlid Buttikofferi Cichlid
    [Show full text]
  • Updated Inventory List 2-Freshwater
    (Sm) SA Redtail Ca/ish Dovii Cichlid New Guinea Rainbow African Clawed Frogs Dwarf Orange Mexican Lobster Nicaraguenese Cichlid Albino Bristlenose Pleco Electric Blue Acara Odeassa Barb Albino Orange Millennium Rainbow Electric Blue Johanni Cichlid Ornate Bichir Albino Rainbow Shark Electric Blue Lobster Otocinclus caish Albino Tiger Barb Electric Blue Ram Panda Tetra Archer Fish Ember Tetra Pearl Leeri Gourami Aristochromis Christyi Cichlid Emperor Tetra Phoenix Rasbora Assorted African cichlid Espei Rasbora Pink kissing gourami Assorted Angels Fahaka Puffer Polka Dot Pictus ca/ish Assorted Balloon Molly Fancy Angels Powder Blue Dwarf Gourami Assorted Glofish Tetra Fancy Guppies (various types) Rainbow Shark Assorted Hifin Platy Festae Red Terror Red and Black Oranda Goldfish Assorted Lionhead Goldfish Figure 8 Puffer Red Bubble eye Goldfish Assorted Platy Firecracker Lelupi Red Eye Tetra Assorted swordtail Firemouth Cichlid Red Hook Silver Dollar Auratus Cichlid Florida Plecos Red Paradise Gourami Australian Desert Goby Fugu Puffer Red Serpae Tetra Australian Rainbow Geophagus Brasiliensis Cichlid Red Texas Cichlid Axolotl German Blue Ram Redtail (osphronemus) Gourami Bala Shark German Gold Ram Redtail Shark BB Puffer Giant Danio Redtail Sternella Pleco (L114) BeRa - Halfmoon Dragonscale Male Glass Cats Redtop Emmiltos Cichlid Mphanga BeRa - Male GloFish Danio Ribbon Guppies BeRa- Black MG Glolite Tetra Roseline Shark BeRa- Blue Alien Plakat PAIR (WOW!!) Gold Algae Eater Rosy Tetra BeRa- Dumbo super delta Gold Dojo Loach Ryukin Goldfish Black
    [Show full text]
  • Assessments of Public's Perceptions of Their
    International Journal of Asian History Culture and Tradition Vol 3, No.2, pp. 21-29, August 2016 Published by European Centre for Research Training and Development UK (www.eajournals.org) ASSESSMENTS OF PUBLIC’S PERCEPTIONS OF THEIR SATISFACTIONS TO THEIR PARTICIPATING ACTIVITIES ON THE LOTUS THROWING (RUB BUA) FESTIVAL TOWARD CULTURAL HERITAGE OF BANG PHLI COMMUNITIES IN THE 80TH IN 2015 “ONE OF THE WORLD: ONLY ONE OF THAILAND‖ Maj. Gen. Utid Kotthanoo, Prasit Thongsawai, Daranee Deprasert, and Thitirut Jaiboon Southeast Bangkok College, Bang Na, Bangkok, Thailand 10260 Tel: +66 (0)8 4327 1412 Fax: +66 2 398 1356 ABSTRACT: This research is reported an important of the favorite festivals in Thailand, which is the lotus throwing (Rap Bua) festival in Bang Phli, Samut Prakan. This is basically what happens as countless thousands of local public line the banks of Samrong Canal to throw lotus flowers onto a boat carrying a replica of the famous Buddha image Luang Poh To. The aims of this research are to describe for assessing public’s perceptions of their participants who go to Wat Bang Phli Yai Nai which, for obvious reasons, has the best atmosphere, to compare between public’s perception of their gender of their satisfactions to the entire route from start to finish of the boat carrying the Buddha image wasn’t scheduled to pass the front of Wat Bang Phli Yai Nai toward their participated activities. Associations between public’s participating activities and their satisfied of the lotus throwing (Rap Bua) festival were assessed. Using the qualitative data with interview, observation, and participated memberships’ activities were designed.
    [Show full text]
  • Genetic Investigation of Some Perciformes Fish Species Using Karyological Analysis
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(5): 227 – 236 (2020) www.ejabf.journals.ekb.eg Genetic Investigation of Some Perciformes Fish Species Using Karyological Analysis Ali H. Abu Almaaty*, Iman M. Bahgat, Mariam E. E. Suleiman and Mohamed K. Hassan Zoology Department, Faculty of Science, Port Said University, Port Said, Egypt. *Corresponding Author: [email protected] ARTICLE INFO ABSTRACT Article History: In the order perciformes, there are many of fishes which have Received: July 12, 2020 economic importance and have cytogenetic biodiversity. Cytogenetics is Accepted: July 21, 2020 becoming an important biodiversity-detection tool and used to measurement Online: July 25, 2020 biodiversity evolutionary aspects. A remarkable degree of chromosomal _______________ conservatism (2n=48, FN=48) has been identified in several families of Perciformes. However, some families exhibit greater karyotypic diversity. Keywords: The present study was aimed to characterize cytogenetically the Cytogenetic analysis, chromosomal formula, chromosome numbers and karyotypes of three fish Chromosomes, species of order Perciformes; Colisa chuna, Osphronemus goramy and Betta Karyotype, splendens using karyological analysis. All Fish species were collected from Perciforme fish. ornamental fish farms in Egypt. The diploid chromosome number, chromosomal formula and fundamental numbers of the three species under study were 2n=46, 20m+26sm and FN=92, 2n=48, 2m+46a and FN=50 and 2n=42, 12sm+14st+16a and FN=68 respectively. These results may open the way for using cytogenetic analysis in the modern taxonomy. INTRODUCTION Fish are represented by 32,900 species; more than 20,000 are marine and 8,000 are living in Neotropical continental waters.
    [Show full text]
  • Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans: Trends and Prospects
    FAO ISSN 2070-7010 FISHERIES AND AQUACULTURE TECHNICAL PAPER 564 Demand and supply of feed ingredients for farmed fish and crustaceans Trends and prospects Cover photograph: Drying of farm-made aquafeed for Nile tilapia, Jamalpur, Bangladesh (courtesy of FAO/Mohammad R. Hasan). FAO FISHERIES AND Demand and supply of feed AQUACULTURE TECHNICAL ingredients for farmed fish PAPER and crustaceans 564 Trends and prospects Albert G.J. Tacon FAO Consultant Hawaii, United States of America Mohammad R. Hasan Aquaculture Officer Aquaculture Service FAO Fisheries and Aquaculture Department Rome, Italy and Marc Metian Littoral Environment and Societies University of La Rochelle La Rochelle, France FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-106933-2 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request.
    [Show full text]
  • Papua New Guinea’S
    Papua New Guinea’s Fifth National Report to the Convention on Biological Diversity December 2017 Papua New Guinea’s Fifth National Report to the Convention on Biological Diversity Table of Contents Page Executive Summary 1 Part I Biodiversity Status, Trends and Threats and Implications for Human Well-being 16 1. Biodiversity importance in PNG 16 1.1 Human well-being 16 1.2 Socio-economic development 17 1.3 Biodiversity and ecosystems of PNG 19 1.3.1 Terrestrial biodiversity 20 1.3.2 Marine biodiversity 27 2. Major changes in the status and trends of Biodiversity in PNG 28 2.1 Biodiversity status 28 2.1.1 Protected Areas status 31 2.1.2 Species status 32 2.2 Biodiversity trends 34 2.2.1 Trends in Terrestrial biodiversity 34 2.2.2 Trends in Marine biodiversity 39 2.3 Case studies 40 2.3.1 Tree Kangaroo Conservation Program 40 2.3.2 Tenkile Conservation Program 43 2.3.3 Netuli Locally Managed Marine Area 46 2.3.4 Sustainable Wildlife Trade-CITES-Crocodile skin Trade 47 2.3.5 Sustainable Wildlife trade-CITES-Insect trade 48 2.3.6 Beche-de-mer trade 49 2.3.7 Particularly Sensitive Sea Area (PSSA) 50 3. Main threats to Biodiversity in PNG 54 3.1 Landuse change 54 3.1.1 Commercial logging 55 3.1.2 Subsistence agriculture 55 3.1.3 Commercial agriculture 56 3.1.4 Mining 57 3.1.5 Fire 60 3.2 Climate change 61 3.2.1 Terrestrial ecosystems 61 3.2.2 Marine ecosystems 62 3.2.3 Coastal ecosystems 63 3.3 Direct Exploitation 64 3.3.1 Overfishing 65 3.3.2 Firewood 66 3.3.3 Subsistence hunting 67 3.3.4 Non-wood forest products 70 3.4 Eutrophication 70 3.5 Ocean Acidification 72 3.6 Invasive species 72 3.7 Roads 76 3.8 Over-exploitation 76 3.9 Destructive fishing 77 2 Papua New Guinea’s Fifth National Report to the Convention on Biological Diversity 3.10 Climate change in a marine environment 78 3.11 Pollution 80 3.12 Extractive industries 81 3.13 Development corridors 83 3.14 Illegal export/Trade 86 3.15 Other Underlying drivers of biodiversity change 87 4.
    [Show full text]
  • Proceedings, No
    1 of 2 The JSFS 85th Anniversary-Commemorative International Symposium “Fisheries Science for Future Generations” Symposium Proceedings, No. 07003 Original article Effects of biofloc in snakeskin gourami (Trichogaster pectoralis Regan) culture system on growth performance and fillet quality Orapint Jintasataporn 1,* and Srinoy Chumkam 2 1 Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand 2 Faculty of Agricultural Technology, Valaya Alongkorn Rajabhat University, Pathum Thani, 13180, Thailand * Corresponding author. E-mail: [email protected] Keywords: Snakeskin gourami; Biofloc; Intensive system; Growth performance; Feed utilisation; Fillet quality. Received: 18 July 2017 / Accepted: 3 September 2017 © 2017 by the authors. Introduction Materials and methods Biofloc technology is the culture technique that has Experimental design been widely studied and applied in an aquaculture. Due The experiment was assigned in 2X2 factorial and four to the pond environment is deteriorated and the culture replicates for each treatment. Two protein level diets area has been decreased. The demand of fish (factor A) composed by high digestibility materials consumption has increased hence using the biofloc were applied to snakeskin gourami in intensive system technology in aquaculture is focus [1]. Because of the with and without biofloc (factor B). The treatments climate change and sustainable aquaculture concern on were T1: High nutrient density diet of 38% CP without water quality and water supply, an international biofloc, T2: High nutrient density diet of 38% CP with researcher has studied on the culture technique for high biofloc, T3:Normal nutrient density diet of 28% CP growth performance and high production of fish and without biofloc, T4: Normal nutrient density diet of shrimp by low exchange water during an intensive 28% CP with biofloc.
    [Show full text]
  • Spot Gourami Trichogaster Trichopterus (Teleostei: Osphronemidae)
    Belg. J. Zool., 141 (2) : 90-92 July 2011 One more alien freshwater fish species in New Caledonia: the three- spot gourami Trichogaster trichopterus (Teleostei: Osphronemidae) Cyril Firmat* & Paul Alibert UMR CNRS 5561 Biogéosciences - Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France. * Corresponding author: [email protected] of New Caledonia (i.e. the main and largest KEY WORDS: aquarium fish; biological invasions; island of the New Caledonia Archipelago, first occurrence; Oceania; species introduction Fig. 1) are recognized as hosting a vast diversity of freshwater fish and crustacean species. Reporting the occurrences of non-native species Among the 104 recovered species (reviewed by established in a new territory is an important first MARQUET et al., 2003 (1)), around one quarter step to thereafter evaluating both the spread of are endemic, with some of them having been very potential invaders and their consequences for recently described (e.g., Stiphodon mele KEITH native biodiversity. This is of particular relevance et al., 2009 (2)). These species sometimes co- when the newly colonized areas are hotspots of exist with introduced taxa that pose a threat for biodiversity. Located in the southern Pacific, their survival (3; 4). Here, we report the presence the hydrological drainages of the Grande-Terre of an alien osphronemid fish species identified as Fig. 1. – Geographic localization of New Caledonia and the pond hosting a population of Trichogaster trichopterus. The arrow points the exact location of the pond. The alien three-spot gourami in New Caledonia 91 Trichogaster trichopterus (Pallas, 1770) for the museum specimens hosted in the Bavarian State first time in New Caledonia.
    [Show full text]
  • G&G Aquatics
    STORE NAME: ______________________ Page 1 of 8 __ 861 RED MANGROVE CRAB 1.29 G&G AQUATICS BIRDS TLC 7333 LOCKPORT PLACE PARAKEETS 15929 LORTON, VA 22079 __ PK1 BABY PARAKEETS 9.99 __ 10001 12 OZ FRESHWATER 5.99 (703) 339-6400 (800) 783-1738 __ PK6 BABY KEETS 6/LOT 9.50 __ 10003 4 OZ FRESHWATER 2.75 __ PK12 BABY KEETS 12/LOT 8.99 __ 10005 1 GAL FRESHWATER 32.00 FAX (703) 339-4970 __ B200 COCKATEILS 59.99 __ 10021 START-SMART FW 4OZ 5.99 July 01-05, 2013 Specials! __ 10050 12 OZ FRESHWATER SAT 8.99 __ 10060 32 OZ FRESHWATER SAT 11.99 SUPER SPECIALS 80605 80250 HAGEN BIRD BOX __ 10070 1 GAL FRESHWATER SAT 32.00 __ A117 BABY REX BUNNY 9.99 50 LOT .29 or __ 20001 12 OZ SALTWATER 5.99 __ B164 NEON DWARF PEA PUFFER .99 34663 __ 20003 4 OZ SALTWATER 2.75 __ C222 F/W GOLD CLAM 1.79 __95003 ANIMAL BIRD BOXES __ 20005 1 GAL SALTWATER 32.00 __ 929 TR RED RILI SHRIMP 2.99 50/LOT .29 __ 20010 2 OZ SALTWATER 1.50 __ 972 NEON RED LOBSTER 7.99 __ 20021 4OZ START-SMART SW 5.99 __ 977 ELECTRIC BLUE LOBSTER 7.99 REPTILES __ R109 ROSY BOA NICE! 75.00 __ 20050 12 OZ SAT MARINE TANKS 8.99 __ 1059 LG DIAMOND TETRA 1.09 __ 20060 32 OZ SAT MARINE TANKS 11.99 __ R600 GREEN TREE FROG 2.99 __ 1209 PEACOCK GUDGEON 3.99 __ 20070 1 GAL MARINE SAT 32.00 __ 1337 ELEC GREEN GLO BARB 3.99 __ 908 FIRE BELLY TOAD 2.99 __ 40001 4 OZ WATER COND.
    [Show full text]
  • Freshwater Biotas of New Guinea and Nearby Islands: Analysis of Endemism, Richness, and Threats
    FRESHWATER BIOTAS OF NEW GUINEA AND NEARBY ISLANDS: ANALYSIS OF ENDEMISM, RICHNESS, AND THREATS Dan A. Polhemus, Ronald A. Englund, Gerald R. Allen Final Report Prepared For Conservation International, Washington, D.C. November 2004 Contribution No. 2004-004 to the Pacific Biological Survey Cover pictures, from lower left corner to upper left: 1) Teinobasis rufithorax, male, from Tubetube Island 2) Woa River, Rossel Island, Louisiade Archipelago 3) New Lentipes species, male, from Goodenough Island, D’Entrecasteaux Islands This report was funded by the grant “Freshwater Biotas of the Melanesian Region” from Conservation International, Washington, DC to the Bishop Museum with matching support from the Smithsonian Institution, Washington, DC FRESHWATER BIOTAS OF NEW GUINEA AND NEARBY ISLANDS: ANALYSIS OF ENDEMISM, RICHNESS, AND THREATS Prepared by: Dan A. Polhemus Dept. of Entomology, MRC 105 Smithsonian Institution Washington, D.C. 20560, USA Ronald A. Englund Pacific Biological Survey Bishop Museum Honolulu, Hawai‘i 96817, USA Gerald R. Allen 1 Dreyer Road, Roleystone W. Australia 6111, Australia Final Report Prepared for: Conservation International Washington, D.C. Bishop Museum Technical Report 31 November 2004 Contribution No. 2004–004 to the Pacific Biological Survey Published by BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright © 2004 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Freshwater Biotas of New Guinea and
    [Show full text]
  • Impacts of Non-Native Fishes on the Fish Community and the Fishery of the Ciénaga Grande De Santa Marta Estuary, Northern Colombia
    IMPACTS OF NON-NATIVE FISHES ON THE FISH COMMUNITY AND THE FISHERY OF THE CIÉNAGA GRANDE DE SANTA MARTA ESTUARY, NORTHERN COLOMBIA Jenny Leal-Flórez DAAD Cover: 1. Fisherman with cast net in Ciénaga Grande de Santa Marta, Colombia. Photo: INVEMAR 2001 2. The introduced fish Nile tilapia. Photo: INVEMAR 2001 3. Ciénaga Grande de Santa Marta, Colombia. Photo: STS073-760-32, Nasa 1995 4. The introduced fish snakeskin gourami. Photo: C. Mergus 2005, http://www.aquanostalgie.com/Poissons/trombinoscope2.php 5. Children at a fish market in Ciénaga Grande de Santa Marta, Colombia. Photo: INVEMAR 2001 IMPACTS OF NON-NATIVE FISHES ON THE FISH COMMUNITY AND THE FISHERY OF THE CIÉNAGA GRANDE DE SANTA MARTA ESTUARY, NORTHERN COLOMBIA Jenny Leal-Flórez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor in Natural Sciences (Dr. rer. nat.) Faculty of Biology and Chemistry (FB 2) UNIVERSITY OF BREMEN Bremen, December 2007 DAAD ADVISORY COMMITTEE Referees: Prof. Dr. Ulrich Saint-Paul (University of Bremen, Center for Tropical Marine Ecology, Germany) Prof. Dr. Karsten Reise (CAU University of Kiel, Alfred Wegner Institute for Polar and Marine Research, Germany) Examiners: PD. Dr. Broder Breckling (University Bremen, Germany) PD. Dr. Holger Auel (University of Bremen, Germany) Members: Doctorate student Tilman Alpermann (University of Bremen, Alfred Wegner Institute for Polar and Marine Research, Germany) Diploma student Christoph Driemel (University Bremen, Germany) A mis padres María Teresa y Orlando A mis hermanos
    [Show full text]
  • Snakeskin Gourami (Trichopodus Pectoralis) Ecological Risk Screening Summary
    Snakeskin Gourami (Trichopodus pectoralis) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, June 2014 Revised, December 2017 Web Version, 9/11/2019 Photo: Rodolfo B. Reyes. Licensed under Creative Commons BY-NC 3.0 Unported. Available: http://www.fishbase.se/photos/PicturesSummary.php?StartRow=1&ID=499&what=species&Tot Rec=5. (November 5, 2014). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “Naturally occurring in the Mekong basin [in Cambodia] [Rainboth 1996]. Found around the Tonle Sap Great Lake and river [Thuok and Sina 1997] and Stung Sen [Kottelat 1985]. Known from the flooded forests of the lower Mekong and gradually moves back to rivers and Great Lake as floodwaters recede [Rainboth 1996; Cambodian National Mekong Committee 1998].” 1 “Occurs in the Mekong basin [in Laos] [Kottelat 2001]. Found in the Khone Falls [Hill and Hill 1994].” “Naturally found in Mekong and Chao Phraya basins [in Thailand] [Kottelat 2001]. Recorded from Maeklong and Southeast Thailand river systems [Vidthayanon et al. 1997]; also from Klong Kok Kamyan (Suphanburi), Bangkok, Bung Borapet (Nakhon Sawan), Chai Nat and Songkhla [Monkolprasit et al. 1997]. Naturally absent from Peninsular, Northern, and Western Thailand.” “Naturally found in the Mekong basin [in Viet Nam] [Kottelat 2001].” From Vidthayanon (2012): “The species is widely distributed in southeast Asia, occurring in both the Mekong and Chao Phraya drainages, although its native distribution is not completely certain as it has been introduced widely. Paepke (2009) gives the native range as southern Viet Nam, Lao PDR, Thailand, and the Malay Peninsular, and it is also present in Myanmar.” Status in the United States No records of Trichopodus pectoralis introductions in the United States were found.
    [Show full text]