Papua New Guinea’S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conference Series: Earth and Environmental Science 550, Proc
Proceeding ICMA-SURE – 2020 The 3rd International Conference On Multidisciplinary Approaches For Sustainable Rural Development Distinguishing two morphologically similar species of Asteraceae using a chloroplast DNA marker A H Susanto*1 and M Dwiati1 1 Faculty of Biology, Universitas Jenderal Soedirman, Purwokerto, Indonesia * Email: [email protected] Abstract. Synedrella nodiflora (L.) Gaertn and Calyptocarpus vialis Less are members of Asteraceae family that morphologically show high similarities. To genetically distinguish between them, a particular molecular marker should be employed. This study aims to present molecular comparison between both species using a chloroplast DNA marker, i.e. atpB – rbcL IGS. A pair of PCR universal primers was used to amplify the marker. Sequence alignment on the PCR products reveals longer S. nodiflora sequence in comparison to that of C. vialis. In addition, some transversions and transitions are also observed. This suggests that the two species exhibit considerable genetic difference despite their similar phenotypic appearance. 1. Introduction Many members of Asteraceae family are recognized for their potentials as ornamental, medicinal, and economic plants[1]. On the other hand, some others are known as invasive weeds[2], resulting in significant loss on several crops with respect to productivity[3]. Some species of Asteraceae family show very high phenotypical similarities causing difficulty in differentiating them from each other. For example, Calyptocarpus vialis Less has ever been identified as Synedrella vialis (Less.) A. Gray due to its high resemblance to Synedrella nodiflora[4]. Nevertheless, S. vialis is now changed into C. vialis [5] and this is the scientifically accepted name for the species, while S. -
C. R. B. Blackburn M.D., F.R.C.P., F.R.A.C.P
Postgrad Med J: first published as 10.1136/pgmj.46.534.250 on 1 April 1970. Downloaded from Postgraduate Medical Journal (April 1970) 46, 250-256. Medicine in New Guinea: three and a half centuries of change C. R. B. BLACKBURN M.D., F.R.C.P., F.R.A.C.P. Department of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia In 1502, Ludovico di Varthema set out from Italy, Peru for the west. When mutiny threatened after a joined a Persian merchant and sailed to India and landing at Espiritu Santo in the New Hebrides, de then through the Straits of Malacca to the Moluccas, Quiros and his ship turned back, but de Prado and the Spice Islands and Java, returning to India in others transferred to Torres' ship and visited the 1506 when the Portuguese had just defeated the Louisade Archipelago, Doini Islands, Bona Bona Arabian fleet. In Calicut he told three Portuguese and other islands and went on to the Philippines. captains who were friends, Antonio d'Abreu, They sailed along the southern coast of New Guinea Francisco Serrano and Ferdinand Magellan, about because of adverse winds and passed through the the Spice Islands. strait between Australia and New Guinea which was D'Abreu and Serrano after the conquest of named after Torres. The details of this voyage were Malacca in 1511-12 sailed to the Moluccas. lost for 150 They years. copyright. then coasted New Guinea, but did not land, and Diego de Ribera was surgeon on Torres' ship and seem to be the first Europeans to see it although was joined by Alonso Sanchez de Aranda of Seville, the Chinese and Malays knew New Guinea at least surgeon and doctor, who, with de Prado, transferred from the eighth century. -
Platypus Collins, L.R
AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March. -
New Britain New Ireland Mission, South Pacific Division
Administrative Office, New Britain New Ireland Mission, Kokopo, 2012. Built after volcanic eruption in Rabaul. Photo courtesy of Barry Oliver. New Britain New Ireland Mission, South Pacific Division BARRY OLIVER Barry Oliver, Ph.D., retired in 2015 as president of the South Pacific Division of Seventh-day Adventists, Sydney, Australia. An Australian by birth Oliver has served the Church as a pastor, evangelist, college teacher, and administrator. In retirement, he is a conjoint associate professor at Avondale College of Higher Education. He has authored over 106 significant publications and 192 magazine articles. He is married to Julie with three adult sons and three grandchildren. The New Britain New Ireland Mission (NBNI) is the Seventh-day Adventist (SDA) administrative entity for a large part of the New Guinea Islands region in Papua New Guinea located in the South West Pacific Ocean.1 The territory of New Britain New Ireland Mission is East New Britain, West New Britain, and New Ireland Provinces of Papua New Guinea.2 It is a part of and responsible to the Papua New Guinea Union Lae, Morobe Province, Papua New Guinea. The Papua New Guinea Union Mission comprises the Seventh-day Adventist Church entities in the country of Papua New Guinea. There are nine local missions and one local conference in the union. They are the Central Papuan Conference, the Bougainville Mission, the New Britain New Ireland Mission, the Northern and Milne Bay Mission, Morobe Mission, Madang Manus Mission, Sepik Mission, Eastern Highlands Simbu Mission, Western Highlands Mission, and South West Papuan Mission. The administrative office of NBNI is located at Butuwin Street, Kokopo 613, East New Britain, Papua New Guinea. -
Proceedings of the American Academy of Arts and Sciences
1 • I / i PROCEEDINGS AMERICAN ACADEMY ARTS AND SCIENCES. NEW SERIES. Vol. IX. WHOLE SERIES. Vol. XVII. FROM JUNE, 1881, TO JUNE, 1882. SELECTED FROM THE RECORDS. BOSTON: UNIVERSITY PRESS: JOHN WILSON AND SON. 1882. X fi^ CONTENTS. PAQE I. Contributions from the Chemical Laboratory of Harvard College. By Josiah Parsons Cooke 1 II. On the Spectrum of Arsenic. By Oliver W. Huntington 35 III. Thermoelectricity. — Peltier and Thomson Effects. By Charles Bingham Penrose 39 IV. Thermoelectric Line of Copper and Nickel below 0°. By Charles Bingham Penrose 47 V. Crystalline Form of Cryolite. By W. H. Melville ... 55 VI. Researches on the Complex Inorganic Acids. Phospho-molyb- dates. By Wolcott Gibbs, M.D . 62 VII. An Indirect Determination of Chlorine and Bromine by Elec- trolysis. By' Leonard P. Kixnicutt 91 VIII. Contributions from the Chemical Laboratory of Harvard Col- lege. By Charles F. Mabery 94 "^ IX. On Certain Substances obtainedfrom Turmeric. — I. Curcumin. By C. Loring Jackson and A. E. Menke 110 X. Contributions from the Chemical Laboratory of Harvard Col- lege. By Henry B. Hill 125 XI. XV. — Simple Method for Calibrating T'hermometers. By Silas W. Holman 157 XII. Contributions to North American Botany. By Asa Gray . 163 XIII. The Wedge Photometer. By Edward C. Pickering . 231 XIV. On the Color and the Pattern of Insects. By Dr. II. A. Hagen 234 IV CONTENTS. PAGE XV. On Telephoning over long Distances or through Cables. By N. D. C. Hodges 268 XVI. On the Young Stages of some Osseous Fishes. With Plates. By Alexander Agassiz 271 XVII. XVI. -
Zoological Parks Authority Annual Report 2009-2010
contents ZOOLOGICAL PARKS AUTHORITY ANNUAL REPORT 2010 ZOOLOGICAL PARKS AUTHORITY ANNUAL REPORT 2010 contents Our Purpose To secure long term populations of species in natural environments while engaging the community in global conservation action. Perth Zoo Location In line with State Government requirements, This work is copyright. It may be reproduced in 20 Labouchere Road Perth Zoo’s annual report – the Zoological Parks whole or in part for study or training purposes if Authority Annual Report 2009-2010 – is published an acknowledgment of the source is included. South Perth, Western Australia. in an electronic format. Perth Zoo encourages Such use must not be for the purpose of sale or Postal Address people to use recycled paper if they print a copy commercial exploitation. Subject to the Copyright of this report or sections of it. For the convenience Act, reproduction, storage in a retrieval system or PO Box 489 of readers and to minimise download times and transmission in any form by any means of any part South Perth print outs, the annual report has been presented of the work other than for the purposes above is Western Australia 6951 in chapters, as well as the entire document. The not permitted without prior written authorisation annual report is presented in PDF format. All from the Zoological Parks Authority. Contact sections, except the financial statements, are also Information about this report and requests and presented in Word format. Telephone (08) 9474 0444 inquiries concerning reproduction should be Facsimile (08) 9474 4420 Zoological Parks Authority Annual Report addressed to: 2009-2010 [email protected] Debra Read © Zoological Parks Authority 2010 Media and Communications Manager www.perthzoo.wa.gov.au Perth Zoo ISSN 1447-6711 (On-line) 20 Labouchere Road ISSN 1447-672X (Print) South Perth WA 6151 Tel (08) 9474 0383. -
A Species-Level Phylogenetic Supertree of Marsupials
J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology. -
Growth Performance and Survival Rate of Giant Gourami Fingerlings (Osphronemus Goramy Lacepede, 1801) with Potassium Diformate Addition
Available online at www.worldscientificnews.com WSN 143 (2020) 103-114 EISSN 2392-2192 Growth performance and survival rate of giant gourami fingerlings (Osphronemus goramy Lacepede, 1801) with potassium diformate addition Algi Azmi Nugraha*, Ayi Yustiati, Ibnu Bangkit, Yuli Andriani Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung – Sumedang KM.21 Jatinangor 45363, Indonesia *E-mail address: [email protected] ABSTRACT This research aims to determine the method of adding potassium diformate to commercial feed to increase survival and growth in gourami juvenile. The method used in this research is an experimental method using a Completely Randomized Design (CRD), consists of four treatments and four replications. The treatments used are (A) Without giving Potassium diformate (control), (B) giving potassium diformate by 0.3%, (C) giving potassium diformate by 0.5% and (D) giving potassium diformate by 0.8%. The test fish used was 300 giant gourami with a length of 4-6 cm. The containers used in this research were aquariums with a size of 40 × 30 × 40 cm3 that reared in 16 aquariums. The density of giant gourami fingerlings during the research was 10 fish per aquarium. The rearing period was 40 days. The feed given was 3% of body mass. Water quality parameters (temperature, pH and dissolved oxygen) were observed every 10 days. Other parameters are the daily growth rate, feed efficiency, the survival rate and the acidity of intestinal and stomach which were observed every 10 days. The results showed that the addition of potassium diformate by 0.3% gives the best results of daily growth rate of 1.31%, feeding efficiency of 37.18%, survival rate of 100% and decreased acidity in the intestine and stomach which helps in the process of protein absorption. -
Freshwater Inventory March 28
African Clawed Frogs Endler's Livebearer Panda Loach Albino Rainbow Shark Fahaka Puffer Panda Platy Archer Fish Fancy Guppies Panda Tetra Peacock Gudgeon Assassin Snail Festae Red Terror Florida Assorted African cichlid Figure Eight Puffer Pearl Leeri Gourami Assorted Angels Firecracker Lelupi Peppermind Pleco L030 Assorted Balloon Molly Firemouth Cichlid Pheonix Tetra Powder Blue Dwarf Assorted Glofish Tetra Florida Plecos Gourami Assorted Lionhead Geophagus Brasiliensis Purple Rose Queen Goldfish Cichlid Cichlid Assorted Platy German Blue Ram Rainbow Shark Red and Black Oranda Assorted Ryukin Goldfish German Gold Ram Goldfish Australian Desert Goby Giant Danio Red Bubble eye Goldfish Australian Rainbow Glass Cats Red Eye Tetra Bala Shark GloFish Danio Red Paradise Gourami BB Puffer Gold Dojo Loach Red Phantom Tetra Gold Firecracker Black Lyretail Molly Tropheus Moori Red Pike Cichlid Black Moor Goldfish Gold Gourami Red Tail shark Black Neon Tetra Gold Severum Red Texas Cichlid Black Phantom Tetra Assorted Platy Redfin Blue Variatus Gold White Cloud Redfin Copadichromas Black Rasbora Het Mountain Minnow Borleyi Cichlid Black Ruby Barb Golden Wonder Killie Redtail Black Variatus Green Platinum Tiger Redtail Sternella Pleco Black Skirt Tetra Barb (L114a) Blackfin Cyprichromis Redtop Emmiltos Cichlid Leptosoma Cichlid Green Texas Cichlid Mphanga Green Yellow Tail Blehri rainbow Dwarf Pike Cichlid Ribbon Guppies Blood Red Parrot Haplochromis Cichlid Obliquidens Cichlid Roseline Shark Heterotilapia Blue Dolphin Cichlid Buttikofferi Cichlid -
The Impact of Anchored Phylogenomics and Taxon Sampling on Phylogenetic Inference in Narrow-Mouthed Frogs (Anura, Microhylidae)
Cladistics Cladistics (2015) 1–28 10.1111/cla.12118 The impact of anchored phylogenomics and taxon sampling on phylogenetic inference in narrow-mouthed frogs (Anura, Microhylidae) Pedro L.V. Pelosoa,b,*, Darrel R. Frosta, Stephen J. Richardsc, Miguel T. Rodriguesd, Stephen Donnellane, Masafumi Matsuif, Cristopher J. Raxworthya, S.D. Bijug, Emily Moriarty Lemmonh, Alan R. Lemmoni and Ward C. Wheelerj aDivision of Vertebrate Zoology (Herpetology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; bRichard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; cHerpetology Department, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; dDepartamento de Zoologia, Instituto de Biociencias,^ Universidade de Sao~ Paulo, Rua do Matao,~ Trav. 14, n 321, Cidade Universitaria, Caixa Postal 11461, CEP 05422-970, Sao~ Paulo, Sao~ Paulo, Brazil; eCentre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia; fGraduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; gSystematics Lab, Department of Environmental Studies, University of Delhi, Delhi 110 007, India; hDepartment of Biological Science, Florida State University, Tallahassee, FL 32306, USA; iDepartment of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4120, USA; jDivision of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA Accepted 4 February 2015 Abstract Despite considerable progress in unravelling the phylogenetic relationships of microhylid frogs, relationships among subfami- lies remain largely unstable and many genera are not demonstrably monophyletic. -
Updated Inventory List 2-Freshwater
(Sm) SA Redtail Ca/ish Dovii Cichlid New Guinea Rainbow African Clawed Frogs Dwarf Orange Mexican Lobster Nicaraguenese Cichlid Albino Bristlenose Pleco Electric Blue Acara Odeassa Barb Albino Orange Millennium Rainbow Electric Blue Johanni Cichlid Ornate Bichir Albino Rainbow Shark Electric Blue Lobster Otocinclus caish Albino Tiger Barb Electric Blue Ram Panda Tetra Archer Fish Ember Tetra Pearl Leeri Gourami Aristochromis Christyi Cichlid Emperor Tetra Phoenix Rasbora Assorted African cichlid Espei Rasbora Pink kissing gourami Assorted Angels Fahaka Puffer Polka Dot Pictus ca/ish Assorted Balloon Molly Fancy Angels Powder Blue Dwarf Gourami Assorted Glofish Tetra Fancy Guppies (various types) Rainbow Shark Assorted Hifin Platy Festae Red Terror Red and Black Oranda Goldfish Assorted Lionhead Goldfish Figure 8 Puffer Red Bubble eye Goldfish Assorted Platy Firecracker Lelupi Red Eye Tetra Assorted swordtail Firemouth Cichlid Red Hook Silver Dollar Auratus Cichlid Florida Plecos Red Paradise Gourami Australian Desert Goby Fugu Puffer Red Serpae Tetra Australian Rainbow Geophagus Brasiliensis Cichlid Red Texas Cichlid Axolotl German Blue Ram Redtail (osphronemus) Gourami Bala Shark German Gold Ram Redtail Shark BB Puffer Giant Danio Redtail Sternella Pleco (L114) BeRa - Halfmoon Dragonscale Male Glass Cats Redtop Emmiltos Cichlid Mphanga BeRa - Male GloFish Danio Ribbon Guppies BeRa- Black MG Glolite Tetra Roseline Shark BeRa- Blue Alien Plakat PAIR (WOW!!) Gold Algae Eater Rosy Tetra BeRa- Dumbo super delta Gold Dojo Loach Ryukin Goldfish Black -
Ba3444 MAMMAL BOOKLET FINAL.Indd
Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.