022311 Supp Table 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LHX2 (NM 004789) Human Tagged ORF Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC210786L4 LHX2 (NM_004789) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: LHX2 (NM_004789) Human Tagged ORF Clone Tag: mGFP Symbol: LHX2 Synonyms: hLhx2; LH2 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC210786). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_004789 ORF Size: 1218 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 LHX2 (NM_004789) Human Tagged ORF Clone – RC210786L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_004789.3 RefSeq Size: 2416 bp RefSeq ORF: 1221 bp Locus ID: 9355 UniProt ID: P50458, B3KNJ5 Domains: homeobox, LIM Protein Families: Transcription Factors MW: 44.4 kDa Gene Summary: This gene encodes a protein belonging to a large protein family, members of which carry the LIM domain, a unique cysteine-rich zinc-binding domain. -
Uncovering the Signaling Landscape Controlling Breast Cancer Cell Migration Identifies Novel Metastasis Driver Genes
ARTICLE https://doi.org/10.1038/s41467-019-11020-3 OPEN Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes Esmee Koedoot1,4, Michiel Fokkelman 1,4, Vasiliki-Maria Rogkoti1,4, Marcel Smid2, Iris van de Sandt1, Hans de Bont1, Chantal Pont1, Janna E. Klip1, Steven Wink 1, Mieke A. Timmermans2, Erik A.C. Wiemer2, Peter Stoilov3, John A. Foekens2, Sylvia E. Le Dévédec 1, John W.M. Martens 2 & Bob van de Water1 1234567890():,; Ttriple-negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype. Enhanced TNBC cell motility is a prerequisite of TNBC cell dissemination. Here, we apply an imaging-based RNAi phenotypic cell migration screen using two highly motile TNBC cell lines (Hs578T and MDA-MB-231) to provide a repository of signaling determinants that functionally drive TNBC cell motility. We have screened ~4,200 target genes individually and discovered 133 and 113 migratory modulators of Hs578T and MDA-MB-231, respectively, which are linked to signaling networks predictive for breast cancer progression. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF are essential for cancer cell migration, amplified in human primary breast tumors and associated with metastasis-free survival. Depletion of PRPF4B, BUD31 and BPTF causes primarily down regulation of genes involved in focal adhesion and ECM-interaction pathways. PRPF4B is essential for TNBC metastasis formation in vivo, making PRPF4B a candidate for further drug development. 1 Division of Drug Discovery and Safety, LACDR, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands. 2 Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam 3008 AE, Netherlands. -
The Zinc-Finger Protein CNBP Is Required for Forebrain Formation In
Development 130, 1367-1379 1367 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00349 The zinc-finger protein CNBP is required for forebrain formation in the mouse Wei Chen1,2, Yuqiong Liang1, Wenjie Deng1, Ken Shimizu1, Amir M. Ashique1,2, En Li3 and Yi-Ping Li1,2,* 1Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA 2Harvard-Forsyth Department of Oral Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA 3Cardiovascular Research Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA *Author for correspondence (e-mail: [email protected]) Accepted 19 December 2002 SUMMARY Mouse mutants have allowed us to gain significant insight (AME), headfolds and forebrain. In Cnbp–/– embryos, the into axis development. However, much remains to be visceral endoderm remains in the distal tip of the conceptus learned about the cellular and molecular basis of early and the ADE fails to form, whereas the node and notochord forebrain patterning. We describe a lethal mutation mouse form normally. A substantial reduction in cell proliferation strain generated using promoter-trap mutagenesis. The was observed in the anterior regions of Cnbp–/– embryos at mutants exhibit severe forebrain truncation in homozygous gastrulation and neural-fold stages. In these regions, Myc mouse embryos and various craniofacial defects in expression was absent, indicating CNBP targets Myc in heterozygotes. We show that the defects are caused by rostral head formation. Our findings demonstrate that disruption of the gene encoding cellular nucleic acid Cnbp is essential for the forebrain induction and binding protein (CNBP); Cnbp transgenic mice were able specification. -
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
International Journal of Molecular Sciences Article Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins M. Quadir Siddiqui 1,† , Maulik D. Badmalia 1,† and Trushar R. Patel 1,2,3,* 1 Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada; [email protected] (M.Q.S.); [email protected] (M.D.B.) 2 Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada 3 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada * Correspondence: [email protected] † These authors contributed equally to the work. Abstract: Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and func- tions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share Citation: Siddiqui, M.Q.; Badmalia, similarities with transcriptional regulators and have positively charged electrostatic patches, which M.D.; Patel, T.R. -
Specificity Landscapes Unmask Submaximal Binding Site Preferences of Transcription Factors
Specificity landscapes unmask submaximal binding site preferences of transcription factors Devesh Bhimsariaa,b,1, José A. Rodríguez-Martíneza,2, Junkun Panc, Daniel Rostonc, Elif Nihal Korkmazc, Qiang Cuic,3, Parameswaran Ramanathanb, and Aseem Z. Ansaria,d,4 aDepartment of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706; bDepartment of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI 53706; cDepartment of Chemistry, University of Wisconsin–Madison, Madison, WI 53706; and dThe Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI 53706 Edited by Michael Levine, Princeton University, Princeton, NJ, and approved September 24, 2018 (received for review July 13, 2018) We have developed Differential Specificity and Energy Landscape Here, we report the development of Differential Specificity (DiSEL) analysis to comprehensively compare DNA–protein inter- and Energy Landscapes (DiSEL) to compare experimental actomes (DPIs) obtained by high-throughput experimental plat- platforms, computational methods, and interactomes of TFs, forms and cutting edge computational methods. While high-affinity especially those factors that bind identical consensus motifs. Our DNA binding sites are identified by most methods, DiSEL uncovered results reveal that (i) most high-throughput experimental plat- nuanced sequence preferences displayed by homologous transcription forms reliably identify high-affinity motifs but yield less reliable factors. Pairwise analysis of 726 DPIs uncovered homolog-specific dif- information on submaximal sites; (ii) with few exceptions, com- ferences at moderate- to low-affinity binding sites (submaximal sites). putational methods model DPIs with a focus on high-affinity DiSEL analysis of variants of 41 transcription factors revealed that sites; (iii) submaximal sites improve the annotation of biologi- many disease-causing mutations result in allele-specific changes in cally relevant binding sites across genomes; (iv) among members binding site preferences. -
Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7 -
Deletion of Vax1 from Gonadotropin-Releasing Hormone (Gnrh) Neurons Abolishes Gnrh Expression and Leads to Hypogonadism and Infertility
3506 • The Journal of Neuroscience, March 23, 2016 • 36(12):3506–3518 Cellular/Molecular Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility Hanne M. Hoffmann,1 Crystal Trang,1 Ping Gong,1 Ikuo Kimura,2 Erica C. Pandolfi,1 and XPamela L. Mellon1 1Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, and 2Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Japan Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regu- lates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development, Vax1flox mice were generated and lineage tracing performed in Vax1flox/flox:GnRHcre:RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1. The absence of GnRH staining in adult Vax1flox/flox:GnRHcre mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7. -
Drosophila Valosin-Containing Protein Is Required for Dendrite Pruning Through a Regulatory Role in Mrna Metabolism
Drosophila Valosin-Containing Protein is required for dendrite pruning through a regulatory role in mRNA metabolism Sebastian Rumpfa,b,c,1,2, Joshua A. Bagleya,b,c, Katherine L. Thompson-Peera,b,c, Sijun Zhua,b,c,3, David Gorczycaa,b,c, Robert B. Becksteadd, Lily Yeh Jana,b,c, and Yuh Nung Jana,b,c,2 aHoward Hughes Medical Institute and Departments of bPhysiology and cBiochemistry, University of California, San Francisco, CA 94158; and dPoultry Science Department, University of Georgia, Athens, GA 30602 Contributed by Yuh Nung Jan, April 16, 2014 (sent for review December 20, 2013) The dendritic arbors of the larval Drosophila peripheral class IV for pruning (2, 7, 8), as well as the ATPase associated with di- dendritic arborization neurons degenerate during metamorphosis verse cellular activities (AAA) ATPase Valosin-Containing in an ecdysone-dependent manner. This process—also known as Protein (VCP) (CDC48 in yeast, p97 in vertebrates, also known dendrite pruning—depends on the ubiquitin–proteasome system as TER94 in Drosophila) (11), which acts as a chaperone for (UPS), but the specific processes regulated by the UPS during prun- ubiquitylated proteins (12). Interestingly, autosomal dominant ing have been largely elusive. Here, we show that mutation or mutations in the human VCP gene cause hereditary forms of inhibition of Valosin-Containing Protein (VCP), a ubiquitin-depen- ubiquitin-positive frontotemporal dementia (FTLD-U) (13) and dent ATPase whose human homolog is linked to neurodegenera- amyotrophic lateral sclerosis (ALS) (14). A hallmark of these tive disease, leads to specific defects in mRNA metabolism and that diseases is the occurrence of both cytosolic and nuclear ubiq- this role of VCP is linked to dendrite pruning. -
Primepcr™Assay Validation Report
PrimePCR™Assay Validation Report Gene Information Gene Name LIM homeobox 4 Gene Symbol LHX4 Organism Human Gene Summary This gene encodes a member of a large protein family which contains the LIM domain a unique cysteine-rich zinc-binding domain. The encoded protein is a transcription factor involved in the control of differentiation and development of the pituitary gland. Mutations in this gene cause combined pituitary hormone deficiency 4. Gene Aliases CPHD4, FLJ22769 RefSeq Accession No. NC_000001.10, NG_008081.1, NT_004487.19 UniGene ID Hs.658487 Ensembl Gene ID ENSG00000121454 Entrez Gene ID 89884 Assay Information Unique Assay ID qHsaCED0002909 Assay Type SYBR® Green Detected Coding Transcript(s) ENST00000263726 Amplicon Context Sequence CTATGGAATCCCCCAGTCTCCATCCTCCATATCGTCCCTGCCATCCCACGCTCCT TTGCTCAATGGGCTGGATTACACGGTGGACAGTAATTTGGGCATCATTGC Amplicon Length (bp) 75 Chromosome Location 1:180243462-180243566 Assay Design Exonic Purification Desalted Validation Results Efficiency (%) 94 R2 0.9993 cDNA Cq 24.14 cDNA Tm (Celsius) 82.5 gDNA Cq 23.49 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 1/4 PrimePCR™Assay Validation Report LHX4, Human Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 2/4 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Human Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online. -
Absence of S100A4 in the Mouse Lens Induces an Aberrant Retina-Specific Differentiation Program and Cataract
www.nature.com/scientificreports OPEN Absence of S100A4 in the mouse lens induces an aberrant retina‑specifc diferentiation program and cataract Rupalatha Maddala1*, Junyuan Gao2, Richard T. Mathias2, Tylor R. Lewis1, Vadim Y. Arshavsky1,3, Adriana Levine4, Jonathan M. Backer4,5, Anne R. Bresnick4 & Ponugoti V. Rao1,3* S100A4, a member of the S100 family of multifunctional calcium‑binding proteins, participates in several physiological and pathological processes. In this study, we demonstrate that S100A4 expression is robustly induced in diferentiating fber cells of the ocular lens and that S100A4 (−/−) knockout mice develop late‑onset cortical cataracts. Transcriptome profling of lenses from S100A4 (−/−) mice revealed a robust increase in the expression of multiple photoreceptor‑ and Müller glia‑specifc genes, as well as the olfactory sensory neuron‑specifc gene, S100A5. This aberrant transcriptional profle is characterized by corresponding increases in the levels of proteins encoded by the aberrantly upregulated genes. Ingenuity pathway network and curated pathway analyses of diferentially expressed genes in S100A4 (−/−) lenses identifed Crx and Nrl transcription factors as the most signifcant upstream regulators, and revealed that many of the upregulated genes possess promoters containing a high‑density of CpG islands bearing trimethylation marks at histone H3K27 and/or H3K4, respectively. In support of this fnding, we further documented that S100A4 (−/−) knockout lenses have altered levels of trimethylated H3K27 and H3K4. Taken together, -
MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits.