Competitiveness of the Heating and Cooling Industry and Services Part 1 of the Study on the Competitiveness of the Renewable Energy Sector

Total Page:16

File Type:pdf, Size:1020Kb

Competitiveness of the Heating and Cooling Industry and Services Part 1 of the Study on the Competitiveness of the Renewable Energy Sector Competitiveness of the heating and cooling industry and services Part 1 of the Study on the competitiveness of the renewable energy sector Final Report ENER/C2/2016-501 28 June 2019 Study on the competitiveness of the renewable energy sector EUROPE DIRECT is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you) LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2019 ISBN: 978-92-76-09233-9 Doi: 10.2833/569159 Catalogue: MJ-03-19-513-EN-N © European Union, 2019 Reproduction is authorised provided the source is acknowledged. EUROPEAN COMMISSION DIRECTORATE C Renewables, Research and Innovation, Energy Efficiency European Commission B-1049 Brussels Main Authors: Malene S Jespersen, Ivo Georgiev, Sára D. Jaganjacová (COWI) April 2019 2 Study on the competitiveness of the renewable energy sector Table of Contents Abstract ............................................................................................................... 5 Executive summary ............................................................................................... 6 1. Introduction ............................................................................................... 10 1.1 Background ................................................................................................ 11 2. Competitiveness of renewables in the European heating and cooling industry .... 15 2.1 Assessment of the biomass technology segment ............................................. 17 2.1.1 Current state of play .............................................................................. 17 2.1.2 Competitiveness of the biomass industry .................................................. 17 2.1.3 Case study ............................................................................................ 18 2.2 Assessment of the biogas technology segment ................................................ 19 2.2.1 Current state-of-play.............................................................................. 19 2.2.2 Competitiveness of the biogas industry .................................................... 19 2.2.3 Case study ............................................................................................ 20 2.3 Assessment of the heat pumps technology segment ........................................ 21 2.3.1 Current state of play .............................................................................. 21 2.3.2 Competitiveness of the heat pumps industry ............................................. 22 2.3.3 Case study ............................................................................................ 22 2.4 Assessment of the solar-thermal technology segment ...................................... 23 2.4.1 Current state-of-play.............................................................................. 23 2.4.2 Competitiveness of the solar-thermal industry ........................................... 25 2.4.3 Case study ............................................................................................ 25 3. Impacts on the EU economy ........................................................................ 26 3.1 Employment and turnover in the biomass technology segment ..................... 29 3.2 Employment and turnover in the biogas technology segment ........................ 30 3.3 Employment and turnover in the heat pumps technology segment ................ 31 3.4 Employment and turnover in the solar-thermal technology segment .............. 32 4 Conclusions and the way forward ..................................................................... 33 Annex A: Case studies on heating and cooling ......................................................... 37 Annex B: Member State plans for heating and cooling by 2030 ................................. 37 April 2019 3 Study on the competitiveness of the renewable energy sector List of abbreviations AEBIOM European Biomass Association Bioenergy Europe Formerly AEBIOM CAPEX Investment costs CEO Chief Executive Officer CHP Combined Heat and Power DG ENER Directorate-General for Energy EBA European Biogas Association EC European Commission EGEC European Geothermal Energy Council EHPA European Heat Pump Association ELENA European Local Energy Assistance Solar Heat Europe/ESTIF European Solar Thermal Industry Federation FTE Full Time Equivalents ISDE Sustainable energy investment subsidy scheme LCOE Levelized Cost of Energy MS Member State MW Megawatts MWh Megawatt Hour NECPs Draft National Energy and Climate Plans NREAP National Renewable Energy Action Plans OPEX Operating Expenditure O&M Operations and Maintenance R&D&I Research & Development and Innovation Directive 2009/28/EC of the European Parliament and of the Council on the promotion of RES Directive the use of energy from renewable sources Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion RED II of the use of energy from renewable sources (recast) RES Renewable Energy Source RES H&C Renewable Heating & Cooling TSE Turun Seudun Energiantuotanto Oy April 2019 4 Study on the competitiveness of the renewable energy sector Abstract This report constitutes the first part of a larger Study on the “Competitiveness of the Renewable Energy Sector”, conducted by COWI and CEPS for the Directorate-General for Energy (DG ENER) of the European Commission (EC). It analyses the competitiveness of renewable energy technologies within the heating and cooling industry. The study has focused on four segments constituting 93% of the European renewable heating and cooling industry: biogas, biomass, heat pumps and solar-thermal. The current stay of play within each technological segment is presented, including their impacts on the EU economy in terms of job creation and turnover based on the latest available data. The competitiveness is assessed through the application of Porter's Five Competitive Forces model based on data analysis and structured interviews. Four case studies have been conducted to examine the impact of local conditions in different European Union (EU) Member States (MS). Finally, the report includes an overview of the 2030 plans of the EU Member States including their heating and cooling targets and supporting policies, based on the draft National Energy and Climate Plans (NECPs). April 2019 5 Study on the competitiveness of the renewable energy sector Executive summary This report summarises the key findings from a study on the competitiveness of renewables in the heating and cooling industry. Heating and cooling represent around half of the final energy consumption of the Union and is a key sector in accelerating the decarbonisation of the energy system. The study was launched by the European Commission and conducted in the period November 2017 to June 2019. The study was implemented by COWI together with CEPS and has been conducted in parallel with another study on private companies' sourcing of renewable energy. Both studies have been implemented under the same contract, but results are reported in two separate publications. The main objective of this study is to answer the questions: 1) How do renewable H&C technologies compete in the H&C sector? and 2) What is the impact of the heating and cooling sector to the EU economy? This study focuses on four specific renewable energy sources (RES) technologies in the heating and cooling industry: biomass, biogas, heat-pumps and solar-thermal. From a methodological standpoint, the study was developed along two strands: a desk study part, particularly statistical data to provide the contextual background against which to understand the competitiveness issues of renewable energy in heating and cooling, and a part focusing on in-depth consultations with key stakeholders. The consultations include a questionnaire and is underpinned by the Porter’s Five Competitive Forces model. Moreover, they are complemented by four case studies (one on each heating and cooling technology) and in the form of interviews with four pan-European heating and cooling technology associations. Furthermore, milestone meetings were held with an Advisory Board consisting of these associations and chaired by DG ENER. These meetings have provided an important tool for validation and discussion of key observations with the joint participation of all concerned associations1. The renewable energy sector has a significant contribution to the EU economy. The EU’s RE sector employed around 1.4 million Full Time Equivalents (FTEs) considering direct and indirect employment2 with a turnover of approximately EUR 154.7 billion, in 2017. A rough estimate indicates that nearly half of those jobs (45%, 650 800 FTEs) are within the heating and cooling industry (considering biomass, biogas, heat pumps and solar-thermal segments). The combined turnover of those four technologies is EUR 67.2 billion and EUR 82.3 billion when biofuels and geothermal sectors are included. Increasing the share of renewable energy sources used in heating and cooling could have a positive impact on the EU economy
Recommended publications
  • Economic and Policy Factors Driving Adoption of Institutional Woody Biomass Heating Systems in the U.S.☆
    Energy Economics 69 (2018) 456–470 Contents lists available at ScienceDirect Energy Economics journal homepage: www.elsevier.com/locate/eneeco Economic and policy factors driving adoption of institutional woody biomass heating systems in the U.S.☆ Jesse D. Young a,⁎,1, Nathaniel M. Anderson b, Helen T. Naughton c, Katrina Mullan c a School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, Flagstaff, AZ 86011, United States b Forestry Sciences Lab, Rocky Mountain Research Station, Forest Service, 800 East Beckwith, Missoula, MT 59802, United States c Department of Economics, University of Montana, Missoula, MT 59812-5472, United States article info abstract Article history: Abundant stocks of woody biomass that are associated with active forest management can be used as fuel for Received 16 September 2015 bioenergy in many applications. Though factors driving large-scale biomass use in industrial settings have Received in revised form 26 August 2017 been studied extensively, small-scale biomass combustion systems commonly used by institutions for heating Accepted 23 November 2017 have received less attention. A zero inflated negative binomial (ZINB) model is employed to identify economic Available online xxxx and policy factors favorable to installation and operation of these systems. This allows us to determine the effec- tiveness of existing policies and identify locations where conditions offer the greatest potential for additional JEL classification: L73 promotion of biomass use. Adoption is driven by heating needs, fossil fuel prices, and proximity to woody bio- L78 mass resources, specifically logging residues, National Forests, and fuel treatments under the National Fire Plan. Q23 Published by Elsevier B.V.
    [Show full text]
  • The Putney School Master Plan May 2019
    The Putney School Master Plan May 2019 Preface | 1 Putney School Master Plan | May 2019 Preface | 2 The Putney School Master Plan May 2019 Updated from December 2011 2019 Campus Masterplanning Committee Emily Jones, Head of School Hugh Montgomery, Director of Development Dawn Zweig, Science Teacher Mark Grieco, Plant Manager Josh Laughlin ‘82, Board Chair Pete Stickney, Farm Manager Randy Smith, Assistant Head of School/CFO Student Representatives Cam Anderson ‘19 Oli Castillo ‘19 Izzy Snyder ‘19 Jules Fisher-White ‘19 Li Ding ‘19 Consultants Maclay Architects Energy Balance, Inc. DEW Construction Corp. Stevens & Associates, P.C. Additional consultants for the 2011 Master Plan: Don Hirsch Design Studio, LLC Lyssa Papazian Future Generations Forestry Preface | i Putney School Master Plan | May 2019 Preface | ii Contents Introduction v4. The Built Environment 15 Describes the structures on The Putney School campus and how they are used, and the circulation patterns vii Executive Summary for both pedestrians and vehicles across the campus Overview of Master Plan Implementation landscape. 4.1 Overall Campus Space Use 15 4.2 Gathering Spaces 19 4.3 Transportation, Circulation and Parking 20 1. Master Plan Background 1 Provides a brief profile of The Putney School and its regional context, a description of the Master 5. The Campus Plan 23 Planning process, and an explanation of the goals on Lays out programmatic recommendations for the this project. built and natural environment. This section identifies 1.1 Mission and Context 1 facilities that need to be re-envisioned to better serve 1.2 Master Plan Concept 2 the needs of the student body.
    [Show full text]
  • Fossil Foodscapes: Examining the United States' Carbon Diet
    FOSSIL FOODSCAPES: EXAMINING THE UNITED STATES’ CARBON DIET by SIENA POLK A THESIS Presented to the Department of International Studies and the Robert D. Clark Honors College in partial fulfillment of the requirements for the degree of Bachelor of Arts June 2020 An Abstract of the Thesis of Siena Polk for the degree of Bachelor of Arts in the Department of International Studies to be taken June 2020 Title: Fossil Foodscapes: Examining the United States’ Carbon Diet Approved: _______________________________________ Dr. Galen Martin While many are aware of the inputs required to maintain food production at an industrial level in the United States, we seldom reflect on the profound significance of a food system that is so deeply rooted in what Matthew Huber calls the “dead ecologies of fossilized energy.” In order to more fully understand and critique the linkages between fossil fuels and agriculture, as well as their ecological and social implications, I examine the use of fossil fuels in agriculture through an eco-socialist framework. I employ Wim Carton’s fossil fuel landscape and Marx as developed by John Bellamy Foster’s concept of metabolic rift to illuminate the linkages between combustible carbons and the food we eat. Ultimately, these two concepts lead to a place of critical understanding in attempts to envision a more sustainable and resilient future. Such an inquiry is of the upmost urgency considering the dual threats of climate change and soil erosion. Both threats are exacerbated by our continued use of fossil fuels and the machines they power. ii iii Acknowledgements This thesis was written on Kalapuya land.
    [Show full text]
  • A Long Food Movement
    A Long Food Movement: Transforming Food Systems by 2045 Lead authors: Pat Mooney, Nick Jacobs, Veronica Villa, Jim Thomas, Marie-Hélène Bacon, Louise Vandelac, and Christina Schiavoni. Advisory Group: Molly Anderson, Bina Agarwal, Million Belay, Jahi Chappell, Jennifer Clapp, Fabrice DeClerck, Matthew Dillon, Maria Alejandra Escalante, Ana Felicien, Emile Frison, Steve Gliessman, Mamadou Goïta, Shalmali Guttal, Hans Herren, Henk Hobbelink, Lim Li Ching, Sue Longley, Raj Patel, Darrin Qualman, Laura Trujillo-Ortega, and Zoe VanGelder. This text was approved by the IPES-Food panel and by ETC Group in March 2021. Citation: IPES-Food & ETC Group, 2021. A Long Food Movement: Transforming Food Systems by 2045. 2 Acknowledgements The lead authors were responsible for the development and drafting of this report through their participation in a Management Committee, under the leadership of Nick Jacobs (IPES- Food Director) and Pat Mooney (Project Lead, IPES-Food panel member and ETC Group co-founder). Research and editorial work was ably assisted by Anna Paskal in the final stages. Throughout the project, the Management Committee has been guided by the contributions of a 21-member Advisory Group, drawn from various world regions and civil society constituencies (including Indigenous peoples, peasant organizations, food workers, and youth climate activists) as well as from multilateral institutions, many scientific disciplines, and business. Although these experts have contributed extensively to guiding the analysis, their participation in the Advisory Group does not imply full validation of the report or specific ideas therein. The management committee would like to thank Advisory Group members for their invaluable commitment and expertise. They are also grateful to the full IPES-Food panel, which has played a key role in shaping and developing this project, and the full ETC Group team for their many research and review contributions, especially Neth Daño and Zahra Moloo.
    [Show full text]
  • Sustainable Energy Based on Sunflower Seed Husk Boiler For
    sustainability Article Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings Miguel-Angel Perea-Moreno 1,* , Francisco Manzano-Agugliaro 2 and Alberto-Jesus Perea-Moreno 1 1 Departamento de Física Aplicada, Universidad de Córdoba, ceiA3, Campus de Rabanales, 14071 Córdoba, Spain; [email protected] 2 Department of Engineering, University of Almeria, ceiA3, 04120 Almeria, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-957-212-633 Received: 13 September 2018; Accepted: 20 September 2018; Published: 25 September 2018 Abstract: Buildings account for one third of the world’s energy consumption, 70% of which is devoted to heating and cooling. To increase the share of renewables in the energy consumption of buildings, it is necessary to research and promote new sources of green energy. World production of sunflower (Helianthus annuus) was 47.34 million tons in 2016, with a harvested area of 26.20 million hectares, and the main producing countries being Ukraine, the Russian Federation, and Argentina, which produce about half of world production of sunflower seed. The sunflower husk, which represents a percentage by weight of 45%–60% of the seed depending on the sunflower variety, is widely used for the production of feed; however, its energy use is very scarce. The objectives of this study were to analyse the energy properties of sunflower husk as a solid biofuel and to carry out an energy, environmental, economic and operational analysis of a thermal installation fed with this by-product of the sunflower oil industry. The results show that this agro-industrial waste has a Higher Heating Value (HHV) of 17.844 MJ/kg, similar to that of other solid biofuels currently used.
    [Show full text]
  • Biomass for Cooling System Technologies: a Feasibility Guide
    Biomass for Cooling System Technologies: A Feasibility Guide May 2016 Co-Authors: Roopesh Pushpala Graduate Research Assistant University of Minnesota, CURA Agricultural Utilization Research Institute Partners: University of Minnesota, Center for Urban and Regional Affairs (CURA) University of Minnesota, Northwest Regional Sustainable Development Partnership (NWRSDP) Western Illinois University, Illinois Institute for Rural Affairs (IIRA) Northwest Minnesota Multi-County Housing & Redevelopment Authority (NWMHRA) Greater Minnesota Management (GMM) Northwest Manufacturing, Inc. / WoodMaster, Minnesota Pinecrest Medical Care Facility, Michigan Heating the Midwest Biomass Resources & Demographics Action Team The Community Assistantship Program (CAP) is a cross-college, cross-campus University of Minnesota initiative coordinated by the Center for Urban and Regional Affairs (CURA). Funds for CAP were generously provided by the McKnight Foundation and the Blandin Foundation. This is a publication of the Center for Urban and Regional Affairs (CURA), which connects the resources of the University of Minnesota with the interests and needs of urban communities and the region for the benefit of all. CURA pursues its urban and regional mission by facilitating and supporting connections between state and local governments, neighborhoods, and nonprofit organizations, and relevant resources at the University, including faculty and students from appropriate campuses, colleges, centers or departments. The content of this report is the responsibility of the author and is not necessarily endorsed by the Kris Nelson Community- Based Research Program, CURA or the University of Minnesota © 2016 by The Regents of the University of Minnesota. This work is licensed under the Creative Commons Attribution--- NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
    [Show full text]
  • Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy
    Using a Life Cycle Assessment Approach to Estimate the Net This strategic report was prepared by Mr Neil Bird, Joanneum Greenhouse Gas Research, Austria; Professor Annette Cowie, The National Emissions of Centre for Rural Greenhouse Gas Research, Australia; Dr Francesco Bioenergy Cherubini, Norwegian University of Science and Technology, Norway; and Dr Gerfried Jungmeier; Joanneum Research, Austria. The report addresses the key methodological aspects of life cycle assessment (LCA) with respect to greenhouse gas (GHG) balances of bioenergy systems. It includes results via case studies, for some important bioenergy supply chains in comparison to fossil energy systems. The purpose of the report is to produce an unbiased, authoritative statement aimed especially at practitioners, policy advisors, and policy makers. IEA Bioenergy IEA Bioenergy:ExCo:2011:03 1 Using a Life Cycle assessMent approaCh to estiMate the net greenhoUse gas Emissions of Bioenergy authors: Mr Neil Bird (Joanneum Research, Austria), Professor Annette Cowie (The National Centre for Rural Greenhouse Gas Research, Australia), Dr Francesco Cherubini (Norwegian University of Science and Technology, Norway) and Dr Gerfried Jungmeier (Joanneum Research, Austria). Key Messages 1. Life Cycle Assessment (LCA) is used to quantify the environmental impacts of products or services. It includes all processes, from cradle-to-grave, along the supply chain of the product or service. When analysing the global warming impact of energy systems, greenhouse gas (GHG) emissions (particularly CO2, CH4, and N2O) are of primary concern. 2. To determine the comparative GHG impacts of bioenergy, the bioenergy system being analysed should be compared with a reference energy system, e.g. a fossil energy system.
    [Show full text]
  • From Wood Waste to Renewable Energy: a Summary of Wood Utilization Efforts in Heating Systems in the West
    ENVIRONMENTALFrom Wood Q WasteUALITY to I RenewableNCENTIVES Energy: PROGRAM (EQIP) A Summary Report of Wood Utilization Efforts in Heating Systems in the Western United States and Territories. A Western Summary JUNE, 2008 OCTOBER, 2007 Promoting science-based forest management that serves the values of society and ensures the health and sustainability of western forests. Table of Content Topic Page Introduction 2 Acknowledgments 2 Process 3 Table I: Completed Projects 4 Table II: Incomplete Projects Currently Being Implemented 6 Table III: Future Feasible Projects 7 Other Notable Activities & Projects 12 Summary & Conclusion 18 Introduction About the Western Forestry The Fuels for Schools Program began in the West after the 2000 fire Leadership Coalition season. Following these fires, Congress passed the National Fire Plan, which was aimed at reducing wood that could possibly fuel fires and The Western Forestry Leadership Coalition fire suppression. It included funds to help with small-diameter wood (WFLC) is a state and federal government utilization, which is not as valuable to the wood industry, is fuel for partnership. The members of the coalition include: fire and costly to dispose of. A community group saw the Fuels for the 23 State and Pacific Island Foresters of the Schools program that had started in Vermont as an example, and West and the 7 western Regional Foresters, 3 applied for funds from the Forest Service for the first school western Research Station Directors, and Forest demonstration project in Darby, Mont. From there, a regional Products Lab Director of the USDA Forest Service. This partnership creates a clear voice on program was developed.
    [Show full text]
  • Carbon Pollution Tax Benefits Vermont
    ISSUE 29 DEC 15, 2014 - FEB 14, 2015 ‘HOLIDAYS , WINTER, SUSTAINABLE FORESTRY’ ISSUE FREE! SUSTAINABLE SOLUTIONS FOR VT, NH, MA, AND BEYOND RS! EA Y 5 Energy Independence, Energy Efficiency, Sustainable Living and MORE! www.greenenergytimes.org | 802.439.6675 WHEN ACTIVISM meets CARBON POLLUTION TAX BUSINESS BENEFITS VERMONT World’s Largest Investor-owned Utility Goes 100% Renewable By George Harvey Desmond Tutu, an Anglican bishop in South Africa, achieved a fair amount of fame as an anti-apartheid activist. Now he is calling on businesses to cut their ties with the fossil fuels industry. Bill McKibben, a Schumann Distin- guished Scholar at Middlebury College, has gained a lot of press recently as the leader of 350.org, which is calling on in- vestors, especially colleges and universi- ties, to divest of their holdings in the fossil fuels industry. Many others have been pushing the Future storms similar to Irene are inevitable. We must take bold steps, like the carbon pollution tax, to help cause for renewable energy, as well. to slow climate change. This photo was taken in Pittsfield, Vt., during Hurricane Irene. Photo: Barb Wood Though it has been slow, the activist- By Fran Putnam propelled movement away from ties to the fossil fuels industry has been gaining The recent launch of an effort to put a by the State of Vermont. The results of the economy. The report highlights that in 2012 ground. At least, it has been slow until price on carbon pollution in Vermont is a study show that a well-crafted policy can Vermonters bought over $1.2 billion worth now.
    [Show full text]
  • Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device
    energies Article Low Emissions Resulting from Combustion of Forest Biomass in a Small Scale Heating Device Karol Tucki 1,* , Olga Orynycz 2,* , Andrzej Wasiak 2 , Antoni Swi´c´ 3 , Leszek Mieszkalski 1 and Joanna Wichłacz 1 1 Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska Street 164, 02-787 Warsaw, Poland; [email protected] (L.M.); [email protected] (J.W.) 2 Department of Production Management, Bialystok University of Technology, Wiejska Street 45A, 15-351 Bialystok, Poland; [email protected] 3 Department of Production Computerization and Robotization, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland; [email protected] * Correspondence: [email protected] (K.T.); [email protected] (O.O.); Tel.: +48-593-45-78 (K.T.); +48-746-98-40 (O.O.) Received: 5 September 2020; Accepted: 19 October 2020; Published: 20 October 2020 Abstract: The paper concerns the analysis of harmful emissions during the combustion process in households. The subject of the analysis is a low emission heating device with an output of 50 kW for burning biomass of forest origin (low-quality hardwoods or softwoods). The proposed boiler is automatically fed from the connected container by means of a screw conveyor. In this way, the optimum amount of fuel is supplied for maximum heat output (adjustment of the ratio of primary air to fuel). The proposed biomass heating system is equipped with a primary and secondary air supply system and exhaust gas sensors. This ensures optimal regulation of the air mixture and efficient and clean combustion.
    [Show full text]
  • Biomass Fact Sheet
    Frequently Asked Questions WHAT IS BIOMASS ENERGY? IS USING WOOD FOR ENERGY SUSTAINABLE? Biomass energy is any combustion of Forests cover 75 percent of the Catskill/Lower Hudson Region. biological materials including wood chips, It is estimated that 700,000 tons of woody biomass is available pellets, agricultural crop residues, farm annually from the Catskill Region. At current growth-to-harvest animal wastes, landfill gases, wood ratios of 3:1, New York State can supply a portion of our energy manufacturing by-products and firewood to needs on a sustainable basis. produce various types of energy including heat, steam, electricity, and liquid fuels. Developing local markets for low-grade wood provides opportunities to improve forest health while returning more energy WHAT ARE THE COST SAVINGS dollars to the local economy. FOR CONVERTING TO WOOD? Biomass energy derived from sustainable forest management is Over the past 20 years, biomass costs have considered nearly carbon-neutral resulting in an overall reduction remained stable versus increasingly volatile of greenhouse gas emissions. Trees and forests remove carbon markets for oil and natural gas. Prices are dioxide (CO²) from the atmosphere as they grow and are replaced not as susceptible to shifts in global demands with new trees, resulting in zero net gain in CO². Burning oil, or limited supplies of fossil fuels. Wood chips gasoline and coal releases carbon previously stored within the are 50 to 70 percent cheaper than No. 2 earth and results in new CO² being added to the atmosphere. heating oil and 75 percent cheaper than natural gas when compared on Btu output.
    [Show full text]
  • Biofuels for Transport BIOGAS – an IMPORTANT RENEWABLE ENERGY SOURCE Good News for Mother Nature
    BIOENERGY NO 5 2013 Tchara : hoto P Compiling global statistics on biomass for energy for a ”GlobalBI OBioenergyENERG YOutlook” – A W ORLD Biomass Combined Heat - How do we get onO Fto OthePP sameORTUNITIES page? and Power (CHP) Biofuels for transport BIOGAS – AN IMPORTANT RENEWABLE ENERGY SOURCE Good news for Mother Nature. She has a sound technical partner. Industry is ready for some good news. chemicals, and energy. The good news some good news – and ANDRITZ delivers. At a time when many industrial pro- is that every ANDRITZ innovation for Contact us for proven solutions for bio- cesses leave a large footprint on the renewable power generation that lowers mass handling, power generation, liquid planet, ANDRITZ is leading the way to greenhouse gases, shrinks the carbon biofuels pre-treatment, and solid biofuels minimal impact. ANDRITZ is a techno- footprint, and sustains higher production production at logy and service provider working at the at lower costs is not only good for your [email protected]. forefront of sustainable and renewable bottom line, but also good for Mother solutions for air, water, raw materials, Nature. Yes, the industry is ready for www.andritz.com Heinz Kopetz: Bioenergy – a world of opportunities !"#$% &'% ()*+, -")%#%*./ 0!!)$"0&")# was &e following articles are excerpts from a series of formed in !""# it has grown in both strength and fact sheets, produced by the WBA, to inform its read- FULL VERSIONS in$uence on a global stage through the support of ers of modern developments in the %eld of bioenergy. OF ARTICLES; governments, scientists and private sector funding. &e WBA is convinced that bioenergy is a sustainable, worldbioenergy.org Simultaneously we are ensuring that our work re- clean energy source that we will increasingly need, in mains scienti%cally veri%able and most importantly, order to one day completely rid ourselves from our impartial to all outside in$uence.
    [Show full text]