Zoonotic Bacterial Meningitis in Adults: Clinical Characteristics, Etiology, Treatment and Outcome Van Samkar, A

Total Page:16

File Type:pdf, Size:1020Kb

Zoonotic Bacterial Meningitis in Adults: Clinical Characteristics, Etiology, Treatment and Outcome Van Samkar, A UvA-DARE (Digital Academic Repository) Zoonotic bacterial meningitis in adults: clinical characteristics, etiology, treatment and outcome van Samkar, A. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): van Samkar, A. (2016). Zoonotic bacterial meningitis in adults: clinical characteristics, etiology, treatment and outcome. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:04 Oct 2021 Zoonotic bacterial meningitis in adults: clinical characteristics, etiology, treatment and outcome Anusha van Samkar van Anusha and outcome treatment etiology, bacterial in adults: clinical characteristics, meningitis Zoonotic Zoonotic bacterial meningitis in adults: clinical characteristics, etiology, treatment and outcome Anusha van Samkar 41586 Samkar, Anusha Cover en uitn kaart.indd 1 24-08-16 15:59 Zoonotic bacterial meningitis in adults: clinical characteristics, etiology, treatment and outcome Anusha van Samkar 41586 Samkar, Anusha van.indd 1 31-08-16 21:29 Design Ferdinand van Nispen, my-thesis.nl, The Netherlands Print: GVO drukkers & vormgevers B.V., Ede, The Netherlands ISBN: 978-94-6332-068-9 The printing of this thesis was financially supported by the Neurology department of the Academic Medical Center, University of Amsterdam, Pfizer BV, and ChipSoft. ©Anusha van Samkar, 2016 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by any means, without permission of the author, or, when appropriate, of the Publisher of the publication or illustration material. 41586 Samkar, Anusha van.indd 2 31-08-16 21:29 Zoonotic bacterial meningitis in adults: clinical characteristics, etiology, treatment and outcome ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 11 oktober 2016, te 10:00 uur door Anusha van Samkar geboren te Leiden 41586 Samkar, Anusha van.indd 3 31-08-16 21:29 PROMOTIECOMMISSIE Promotor: Prof. dr. D. van de Beek Universiteit van Amsterdam Copromotores: Dr. M.C. Brouwer Universiteit van Amsterdam Dr. A. van der Ende Universiteit van Amsterdam Overige leden: Prof. dr. P. Portegies Universiteit van Amsterdam Prof. dr. M.P. Grobusch Universiteit van Amsterdam Prof. dr. I.N. van Schaik Universiteit van Amsterdam Prof. dr. E.A.M. Sanders Universiteit Utrecht Prof. dr. E.J. Kuijper Universiteit Leiden Prof. dr. Y.B.W.E.M. Roos Universiteit van Amsterdam Faculteit der Geneeskunde 41586 Samkar, Anusha van.indd 4 31-08-16 21:29 CONTENTS Chapter 1 Introduction 7 Chapter 2 Streptococcus equi meningitis 13 Clinical Microbiology and Infection 2016; 22: e3-4. Chapter 3 Streptococcus suis meningitis in the Netherlands 25 Journal of Infection 2015; 71: 602-4. Chapter 4 Streptococcus suis meningitis: 33 a systematic review and meta-analysis PLoS Neglected Tropical Diseases 2015; 9: e0004191. Chapter 5 Capnocytophaga canimorsus meningitis: 47 three cases and review of the literature Zoonoses and Public Health 2016; 63: 442-8. Chapter 6 Campylobacter fetus meningitis in adults: 63 report of two cases and review of the literature Medicine (Baltimore) 2016; 95: e2858. Chapter 7 Suspected leptospiral meningitis in adults: 79 report of four cases and review of the literature The Netherlands Journal of Medicine 2015; 73: 464-70. Chapter 8 Streptococcus gallolyticus meningitis in adults: 97 report of five cases and review of the literature Clinical Microbiology and Infection 2015; 21: 1077-83. Chapter 9 General discussion: zoonotic bacterial meningitis in adults 115 Neurology 2016, published online. Summary 135 Samenvatting 139 Dankwoord 143 Portfolio 147 41586 Samkar, Anusha van.indd 5 31-08-16 21:29 41586 Samkar, Anusha van.indd 6 31-08-16 21:29 CHAPTER 1 INTRODUCTION 41586 Samkar, Anusha van.indd 7 31-08-16 21:29 Chapter 1 Since the early days of history, it has been known that diseases can be transmitted from animals to humans. Around 2300 BC, the Mesopotamian laws of Eshnunna stated: “If a dog is vicious and the authorities have brought the fact to the knowledge of its owner, [if nevertheless] he does not keep it in, it bites a man and causes [his] death, then the owner of the dog shall pay two-thirds of a mina of silver.”1 In 380 BC, Aristotle described this zoonotic disease, now known as rabies, as “fatal to the dog itself and to any animal that it may bite”.1 Since then, more than 200 zoonotic diseases have been described. Some of these diseases have had a major impact on human civilization. For instance, the bubonic plague, that is transmitted to humans from infected rodents, wiped out 25% of Europe’s population in the 14th century and is therefore considered one of the most devastating pandemics in human history.2 Bovine tuberculosis, transmitted to humans through consumption of unpasteurized dairy products and contact with infected animals, was a significant cause of death in Europe in the 19th century.3 Due to modern sanitation and public health practice, the spread and mortality of many infectious diseases has decreased markedly. However, due to socio- economic and ecological changes, such as human population growth and loss of biodiversity, the incidence of emerging infectious diseases events has increased since 1940.4,5 More than 60% of the roughly 400 emerging infectious diseases that have been identified are zoonotic.4,6 In addition, the most recent pandemics and epidemics, e.g. Q-fever, severe acute respiratory syndrome (SARS) and avian influenza, are caused by zoonotic pathogens.6 Zoonotic diseases are thus an increasing public health problem.6 Zoonotic pathogens may cause a variety of symptoms and diseases. One of the possible clinical manifestations of a zoonotic bacterial infection is meningitis. Bacterial meningitis is a neurologic emergency requiring prompt recognition and treatment. Despite fast initiation of antibiotic treatment, the mortality of bacterial meningitis remains high at 17%, and half of the patients surviving bacterial meningitis end up with neurological sequelae.7 In patients presenting with bacterial meningitis, rapid identification of the bacteria causing the infection is essential for choice of treatment and for prediction of outcome. While meningitis caused by pathogens originating 8 41586 Samkar, Anusha van.indd 8 31-08-16 21:29 Introduction from humans has been studied extensively, little is known about meningitis caused by zoonotic bacteria. 1 Aims and outline of this thesis The aim was to investigate the epidemiology, etiology, clinical characteristics, treatment, outcome and prevention of zoonotic bacterial meningitis. In the following chapters, we will describe cases of meningitis caused by several zoonotic pathogens. In general, one zoonotic pathogen is described per chapter, combining cases identified in a nationwide cohort study of bacterial meningitis patients7 and a review of the literature on meningitis caused by the described zoonotic pathogen. In Chapter 2, we describe cases of Streptococcus equi meningitis and perform a literature review on S. equi meningitis. In Chapter 3, we describe cases of Streptococcus suis meningitis identified in a nationwide cohort study of bacterial meningitis patients in the Netherlands. In Chapter 4, we perform a systematic review and meta-analysis on the clinical characteristics, adjunctive treatment and outcome of S. suis meningitis. In Chapter 5, we describe the clinical characteristics, complications and outcome of meningitis caused by Capnocytophaga canimorsus. In Chapter 6, we describe cases of Campylobacter fetus meningitis and perform a review of the literature on C. fetus meningitis. In Chapter 7, we describe cases of Streptococcus gallolyticus meningitis. S. gallolyticus, formerly known as a member of the Streptococcus bovis group, is not a zoonotic pathogen, as it occasionally occurs as a commensal in the human gastro-intestinal tract.6 Nevertheless, S. gallolyticus meningitis is described in this thesis, as the pathogen was first discovered in cattle and is commonly found in the gastro-intestinal tract of ruminants.7 In Chapter 8, we describe leptospiral meningitis and report four cases of leptospiral meningitis in the Netherlands. Finally, the thesis concludes with a general discussion in Chapter 9, in which we give an overview of the clinical characteristics, treatment and outcome of zoonotic bacterial meningitis. In this chapter, meningitis caused by the formerly mentioned zoonotic pathogens is described with addition of rare zoonotic pathogens not identified in our cohort study, such asBacillus anthracis and Francisella tularensis. 9 41586 Samkar, Anusha van.indd 9 31-08-16 21:29 Chapter 1 References 1. Hagan WA, Bruner DW, Timoney JF. Hagan and Bruner’s microbiology and infectious diseases of domestic animals: with reference to etiology, epizootiology, pathogenesis, immunity, diagnosis, and antimicrobial susceptibility. 8th ed: Cornell University Press; 1981. 2. Griffin JP. Bubonic plague in biblical times. J R Soc Med 2000; 93: 449. 3. Centers for Disease Control and Prevention. Mycobacterium bovis (bovine tuberculosis) in humans. Center for Disease Control and Prevention factsheets 2012.
Recommended publications
  • Product Description EN Bactoreal® Kit Chlamydiaceae
    Product Description BactoReal® Kit Chlamydiaceae For research only, not for diagnostic use BactoReal® Kit Chlamydiaceae Order no. Reactions Pathogen Internal positive control DVEB03113 100 FAM channel Cy5 channel DVEB03153 50 FAM channel Cy5 channel DVEB03111 100 FAM channel VIC/HEX channel DVEB03151 50 FAM channel VIC/HEX channel Kit contents: Detection assay for Chlamydia and Chlamydophila species Detection assay for internal positive control (control of amplification) DNA reaction mix (contains uracil-N glycosylase, UNG) Positive control for Chlamydiaceae Water Background: The Chlamydiaceae family currently includes two genera and one candidate genus: genus Chlamydia (including the species Chlamydia muridarum, Chlamydia suis, Chlamydia trachomatis), genus Chlamydophila (including the species Chlamydophila abortus, Chlamydophila caviae Chlamydophila felis, Chlamydia pecorum, Chlamydophila pneumoniae, Chlamydophila psittaci), and candidatus Clavochlamydia. All Chlamydiaceae are obligate intracellular Gram-negative bacteria that cause diseases in humans and animals worldwide. Description: BactoReal® Kit Chlamydiaceae is based on the amplification and detection of the 23S rRNA gene of C. muridarum, C. suis, C. trachomatis, C. abortus, C. caviae, C. felis, C. pecorum, C. pneumoniae and C. psittaci using real-time PCR. It allows the rapid and sensitive detection of the 23S rRNA gene of Chlamydiaceae from DNA samples purified from different sample material (e.g. with the QIAamp DNA Mini Kit). For subtyping please contact ingenetix. PCR-platforms: BactoReal® Kit Chlamydiaceae is developed and validated for the ABI PRISM® 7500 instrument (Life Technologies), LightCycler® 480 (Roche) and Mx3005P® QPCR System (Agilent), but is also suitable for other real-time PCR instruments. Sensitivity and specificity: BactoReal® Kit Chlamydiaceae detects at least 10 copies/reaction.
    [Show full text]
  • Treponema Borrelia Family: Leptospiraceae Genus: Leptospira Gr
    Bacteriology lecture no.12 Spirochetes 3rd class -The spirochetes: are a large ,heterogeneous group of spiral ,motile bacteria. Although, • there are at least eight genera in this family ,only the genera Treponema,Borrelia,and Leptospira which contain organism pathogenic for humans . -There are some reports of intestinal spirochetes ,that have been isolated from biopsy material ,these are Brachyspira pilosicoli,and Brachyspira aalborgi. *Objectives* Taxonomy Order: Spirochaetales Family: Spirochaetaceae Genus: Treponema Borrelia Family: Leptospiraceae Genus: Leptospira -Gram-negative spirochetes -Spirochete from Greek for “coiled hair "they are : *1*Extremely thin and can be very long *2* Motile by periplasmic flagella (axial fibrils or endoflagella) *3*Outer sheath encloses axial fibrils *4*Axial fibrils originate from insertion pores at both poles of cell 1 Bacteriology lecture no.12 Spirochetes 3rd class Spirochaetales Associated Human Diseases Treponema Main Treponema are: - T. pallidum subspecies pallidum - Syphilis: Venereal (sexual) disease 2 Bacteriology lecture no.12 Spirochetes 3rd class - T. pertenue - Yaws Non venereal - T. carateum - Pinta skin disease All three species are morphologically identical Characteristics of T.pallidum 1-They are long ,slender ,helically coiled ,spiral or cork –screw shaped bacilli. 2-T.pallidum has an outer sheath or glycosaminoglycan contain peptidoglycan and maintain the structural integrity of the organisms. 3-Endoflagella (axial filament ) are the flagella-like organelles in the periplasmic space encased by the outer membranes . 4-The endoflagella begin at each end of the organism and wind around it ,extending to and overlapping at the midpoint. 5- Inside the endoflagella is the inner membrane (cytoplasmic membrane)that provide osmotic stability and cover the protoplasmic cylinders .
    [Show full text]
  • LEPTOSPIRA: Morphology, Classification and Pathogenesis
    iolog ter y & c P a a B r f a o s Mohammed i l Journal of Bacteriology and t et al. J Bacteriol Parasitol 2011, 2:6 o a l n o r DOI: 10.4172/2155-9597.1000120 g u y o J Parasitology ISSN: 2155-9597 Research Article Open Access LEPTOSPIRA: Morphology, Classification and Pathogenesis Haraji Mohammed1*, Cohen Nozha2, Karib Hakim3, Fassouane Abdelaziz4 and Belahsen Rekia1 1Laboratoire de Biotechnologie, Biochimie et Nutrition, Faculté des sciences d’El Jadida, Maroc. 2Laboratoire de Microbiologie et d’Hygiène des Aliments et de l’Environnement Institut Pasteur Maroc, Casablanca, Maroc 3Unité HIDAOA, Département de Pathologie et de santé publique vétérinaire, Institut Agronomique et Vétérinaire Hassan II, Rabat; Maroc. 4Ecole Nationale de Commerce et de Gestion d’El Jadida ; Maroc Abstract Leptospirosis, caused by the pathogenic leptospires, is one of the most widespread zoonotic diseases known. Leptospirosis cases can occur either sporadically or in epidemics, Humans are susceptible to infection by a variety of serovars. These bacteria are antigenically diverse. Changes in the antigenic composition of lipopolysaccharide (LPS) are thought to account for this antigenic diversity. The presence of more than 200 recognized antigenic types (termed serovars) of pathogenic leptospires have complicated our understanding of this genus. Definitive diagnosis is suggested by isolation of the organism by culture or a positive result on the microscopic agglutination test (MAT). Only specialized laboratories perform serologic tests; hence, the decision to treat should not be delayed while waiting for the test results. Keywords: Leptospirosis; Leptospira; Serovar; Morphology; Patho- Morphology of Leptospira genesis Leptospires are corkscrew-shaped bacteria, which differ from other Introduction spirochaetes by the presence of end hooks.
    [Show full text]
  • Syphilis and HIV Co-Infection
    PHD THESIS DANISH MEDICAL JOURNAL Syphilis and HIV co-infection Epidemiology, treatment and molecular typing of Treponema pallidum Kirsten Salado-Rasmussen among MSM, MSM represented 78% of the cases in 2003–2004 (12). Also in contrast to earlier, where most syphilis patients re- This review has been accepted as a thesis together with three previously published papers by University of Copenhagen March 22 2015 and defended on April 17 2015. ported being infected in Eastern Europe, Africa and Asia (10), the majority of the patients now report acquiring syphilis in Denmark Tutor(s): Jan Gerstoft, Terese Lea Katzenstein & Jørgen Skov Jensen. (13). In 2010 screening of pregnant women was re-introduced in Official opponents: Gitte Kronborg, Lars Østergaard & David Mabey. Denmark (14) after the screening had been discontinued as a gen- eral screening in 1998 (10). Correspondence: Department of Infectious Diseases, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø. Denmark Syphilis and HIV co-infection E-mail: [email protected] Syphilis and HIV are strongly linked with one another. The propor- tion of patients with concurrent HIV at the time of syphilis diagno- sis has been substantial since the reemergence of the disease in Dan Med J 2015;62(12):B5176 Denmark (11;13;15) and peaked in 2008 where 58% of MSM diag- nosed with syphilis had concurrent HIV (16). By contrast, only THE 3 ORIGINAL PAPERS ARE 32% of MSM diagnosed with syphilis in 2013 had concurrent HIV 1. Risk of HIV or second syphilis infection in Danish men – leaving 68% susceptible to infection with HIV (13). In study I of with newly acquired syphilis in the period 2000–2010.
    [Show full text]
  • Leptospirosis Importance Leptospirosis Is a Bacterial Zoonosis That Is Common Worldwide, Especially in Developing Countries
    Leptospirosis Importance Leptospirosis is a bacterial zoonosis that is common worldwide, especially in developing countries. Organisms are shed in the urine of infected animals, including Weil’s Syndrome, rodents and domesticated animals, which may not show signs of disease. Humans Swamp Fever, Mud Fever, usually become ill after contact with infected urine, or through contact with water, Autumn Fever (Akiyami), soil or food that has been contaminated. Outbreaks have been associated with Swineherd’s Disease, floodwaters. In animals, the clinical signs of leptospirosis are often related to kidney Rice-Field Fever, disease, liver disease or reproductive dysfunction. In humans, many cases are mild or Cane-Cutter’s Fever, asymptomatic, and go unrecognized. In some patients, however, the illness may Hemorrhagic Jaundice, progress to kidney or liver failure, aseptic meningitis, life-threatening pulmonary Stuttgart Disease, hemorrhage and other syndromes. Canicola Fever, Etiology Redwater of Calves Leptospirosis is caused by various species of Leptospira, a spirochete in the family Leptospiraceae, order Spirochaetales. Some Leptospira are harmless saprophytes that reside in the environment, while others are pathogenic. The basic Last Updated: October 2013 unit of Leptospira taxonomy is the serovar. Serovars consist of closely related isolates based on serological reactions to the organism’s lipopolysaccharide. More than 250 pathogenic serovars, and at least 50 nonpathogenic serovars, have been identified. Two different systems are used to classify Leptospira isolates beyond the serovar. Before 1989, all pathogenic isolates belonged to the species L. interrogans and all nonpathogenic organisms were placed in L. biflexa. Leptospira serovars were also grouped, using serological methods, into 24 serogroups. The genus Leptospira has since been reclassified, using genetic techniques, into 21 species.
    [Show full text]
  • Appendix a Bacteria
    Appendix A Complete list of 594 pathogens identified in canines categorized by the following taxonomical groups: bacteria, ectoparasites, fungi, helminths, protozoa, rickettsia and viruses. Pathogens categorized as zoonotic/sapronotic/anthroponotic have been bolded; sapronoses are specifically denoted by a ❖. If the dog is involved in transmission, maintenance or detection of the pathogen it has been further underlined. Of these, if the pathogen is reported in dogs in Canada (Tier 1) it has been denoted by an *. If the pathogen is reported in Canada but canine-specific reports are lacking (Tier 2) it is marked with a C (see also Appendix C). Finally, if the pathogen has the potential to occur in Canada (Tier 3) it is marked by a D (see also Appendix D). Bacteria Brachyspira canis Enterococcus casseliflavus Acholeplasma laidlawii Brachyspira intermedia Enterococcus faecalis C Acinetobacter baumannii Brachyspira pilosicoli C Enterococcus faecium* Actinobacillus Brachyspira pulli Enterococcus gallinarum C C Brevibacterium spp. Enterococcus hirae actinomycetemcomitans D Actinobacillus lignieresii Brucella abortus Enterococcus malodoratus Actinomyces bovis Brucella canis* Enterococcus spp.* Actinomyces bowdenii Brucella suis Erysipelothrix rhusiopathiae C Actinomyces canis Burkholderia mallei Erysipelothrix tonsillarum Actinomyces catuli Burkholderia pseudomallei❖ serovar 7 Actinomyces coleocanis Campylobacter coli* Escherichia coli (EHEC, EPEC, Actinomyces hordeovulneris Campylobacter gracilis AIEC, UPEC, NTEC, Actinomyces hyovaginalis Campylobacter
    [Show full text]
  • Virulence Factors of Oral Anaerobic Spirochetes
    VIRULENCE FACTORS OF ORAL ANAEROBIC SPIROCHETES David Scott Department of Microbiology and Immuoology McGiH University, Montreal JuneJ996 A Thesis Submitted to the Facuity of Graduate Studies and Research in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy O David Scott, 1996 National Library Bibliothbque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington OttawaON K1AW OttawaON K1AON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otheniise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. TABLE OF CONTENTS Page Abstract vii Resumé ir Acknowledgements xi Claim of contribution to knowledge xii List of Figures xiv List of Tables xvii CHAPTER 1. Literature review and introduction 1. Taxonomy of Spirochetes II. General Characteristics of Spirochetes 5 (i) Mucoid Layer 5 (ii) Outer Membrane Sheath 6 (iii) Axial Fibrils 8 (iv) Peptidoglycan layer 13 (v) Cell Membrane 13 (vi) Cytoplasrn, Nucleoid and Extrachromosornal elements 14 III.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-19891 Leptospira interrogans, Strain HAI0156 Incubation: Temperature: 30°C (Serovar Copenhageni) Atmosphere: Aerobic Propagation: Catalog No. NR-19891 1. Keep vial frozen until ready for use; thaw slowly. 2. Transfer the entire thawed aliquot into a single tube or For research use only. Not for human use. jar of semisolid agar. 3. Incubate the tube or jar at 30°C for 10 to 24 days until an opaque disk of growth is visible several millimeters Contributor: below the surface of the medium (Dinger’s disk). Joseph M. Vinetz, Professor, Department of Medicine, University of California San Diego, La Jolla, California, USA Citation: Acknowledgment for publications should read “The following Manufacturer: reagent was obtained through BEI Resources, NIAID, NIH: BEI Resources Leptospira interrogans, Strain HAI0156 (Serovar Copenhageni), NR-19891.” Product Description: Bacteria Classification: Leptospiraceae, Leptospira Biosafety Level: 2 Species: Leptospira interrogans Appropriate safety procedures should always be used with Serovar: Copenhageni this material. Laboratory safety is discussed in the following Strain: HAI0156 Original Source: Leptospira interrogans (L. interrogans), publication: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and strain HAI0156 (serovar Copenhageni) is a human isolate Prevention, and National Institutes of Health. Biosafety in obtained from a patient at Hospital de Apoyo in Iquitos, 1,2 Microbiological and Biomedical Laboratories. 5th ed. Peru. Washington, DC: U.S. Government Printing Office, 2009; see Comments: Strain HAI0156 was deposited to BEI Resources as part of the Leptospira Genome Project at the J. Craig www.cdc.gov/biosafety/publications/bmbl5/index.htm.
    [Show full text]
  • Environmental DNA Metabarcoding to Detect Pathogenic Leptospira And
    www.nature.com/scientificreports OPEN Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in Received: 20 December 2018 Accepted: 11 April 2019 leptospirosis-endemic areas of Published: xx xx xxxx Japan Yukuto Sato1, Masaru Mizuyama2,6, Megumi Sato 3, Toshifumi Minamoto 4, Ryosuke Kimura5 & Claudia Toma 2 Leptospires, which cause the zoonotic disease leptospirosis, persist in soil and aqueous environments. Several factors, including rainfall, the presence of reservoir animals, and various abiotic and biotic components interact to infuence leptospiral survival, persistence, and pathogenicity in the environment. However, how these factors modulate the risk of infection is poorly understood. Here we developed an approach using environmental DNA (eDNA) metabarcoding for detecting the microbiome, vertebrates, and pathogenic Leptospira in aquatic samples. Specifcally, we combined 4 sets of primers to generate PCR products for high-throughput sequencing of multiple amplicons through next-generation sequencing. Using our method to analyze the eDNA of leptospirosis-endemic areas in northern Okinawa, Japan, we found that the microbiota in each river shifted over time. Operating taxonomic units corresponding to pathogenic L. alstonii, L. kmetyi, and L. interrogans were detected in association with 12 nonpathogenic bacterial species. In addition, the frequencies of 11 of these species correlated with the amount of rainfall. Furthermore, 10 vertebrate species, including Sus scrofa, Pteropus dasymallus, and Cynops ensicauda, showed high correlation with leptospiral eDNA detection. Our eDNA metabarcoding method is a powerful tool for understanding the environmental phase of Leptospira and predicting human infection risk. Leptospirosis is a zoonotic disease that is caused by species of the spirochete genus Leptospira.
    [Show full text]
  • Bacteria of Ophthalmic Importance Diane Hendrix, DVM, DACVO Professor of Ophthalmology
    Bacteria of Ophthalmic Importance Diane Hendrix, DVM, DACVO Professor of Ophthalmology THE UNIVERSITY OF TENNESSEE COLLEGE OF VETERINARY MEDICINE DEPARTMENT OF <<INSERT DEPARTMENT NAME HERE ON MASTER SLIDE>> 1 Bacteria Prokaryotic organisms – cell membrane – cytoplasm – RNA – DNA – often a cell wall – +/- specialized surface structures such as capsules or pili. –lack a nuclear membrane or mitotic apparatus – the DNA is organized into a single circular chromosome www.norcalblogs.com/.../GeneralBacteria.jpg 2 Bacteria +/- smaller molecules of DNA termed plasmids that carry information for drug resistance or code for toxins that can affect host cellular functions www.fairscience.org 3 Variable physical characteristics • Mycoplasma lacks a rigid cell wall • Borrelia and Leptospira have flexible thin walls. • Pili are short, hair-like extensions at the cell membrane that mediate adhesion to specific surfaces. http://www.stopcattlepinkeye.com/about-cattle-pinkeye.asp 4 Bacteria reproduction • Asexual binary fission • The bacterial growth cycle includes: – the lag phase – the logarithmic growth phase – the stationary growth phase – the decline phase • Iron is essential for bacteria 5 Opportunistic bacteria • Staphylococcus epidermidis • Bacillus sp. • Corynebacterium sp. • Escherichia coli • Klebsiella sp. • Enterobacter sp. • Serratia sp. • Pseudomonas sp. (other than P aeruginosa). 6 Infectivity • Adhesins are protein determinates of adherence. Some are expressed in bacterial pili or fimbriae. • Flagella • Proteases, elastases, hemolysins, cytoxins degrade BM and extracellular matrix. • Secretomes and lipopolysaccharide core biosynthetic genes inhibit corneal epithelial cell migration 7 8 Normal bacterial and fungal flora Bacteria can be cultured from 50 to 90% of normal dogs. – Gram + aerobes are most common. – Gram - bacteria have been recovered from 8% of normal dogs.
    [Show full text]
  • Rapid Translocation of Polarized MDCK Cell Monolayers by Leptospira Interrogans, an Invasive but Nonintracellular Pathogen Michele A
    INFECTION AND IMMUNITY, Dec. 2002, p. 6926–6932 Vol. 70, No. 12 0019-9567/02/$04.00ϩ0 DOI: 10.1128/IAI.70.12.6926–6932.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Rapid Translocation of Polarized MDCK Cell Monolayers by Leptospira interrogans, an Invasive but Nonintracellular Pathogen Michele A. Barocchi,1 Albert I. Ko,2,3 Mitermayer Galva˜o Reis,2 Kent L. McDonald,4 and Lee W. Riley1* Division of Infectious Diseases and Immunity, School of Public Health,1 and UC Berkeley Electron Microscopy Laboratory,4 University of California, Berkeley, Berkeley, California 94720; Gonc¸alo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, 40001 Salvador, Bahia, Brazil2; and Division of International Medicine and Infectious Diseases, Weil Medical College of Cornell University, New York, New York 100213 Received 25 February 2002/Returned for modification 3 April 2002/Accepted 22 July 2002 Pathogenic spirochetes of the genus Leptospira are a major cause of human zoonotic infectious disease worldwide. After gaining entry through the skin, the organism causes disease by hematogenously disseminating to multiple organs. The mechanism by which it penetrates the mammalian cell barriers to disseminate is not well understood. In this study, we used a low-passage-number isolate of Leptospira interrogans to elucidate the invasive potential of this spirochete. Quantification of bacteria by dark-field microscopy revealed that patho- genic spirochetes were able to translocate through polarized MDCK cell monolayers at a rate significantly greater than that of nonpathogenic Leptospira or a recognized invasive bacterial pathogen, Salmonella.In contrast to Salmonella, L. interrogans did not alter transepithelial electrical resistance during cell translocation.
    [Show full text]
  • Taxonomy of the Lyme Disease Spirochetes
    THE YALE JOURNAL OF BIOLOGY AND MEDICINE 57 (1984), 529-537 Taxonomy of the Lyme Disease Spirochetes RUSSELL C. JOHNSON, Ph.D., FRED W. HYDE, B.S., AND CATHERINE M. RUMPEL, B.S. Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota Received January 23, 1984 Morphology, physiology, and DNA nucleotide composition of Lyme disease spirochetes, Borrelia, Treponema, and Leptospira were compared. Morphologically, Lyme disease spirochetes resemble Borrelia. They lack cytoplasmic tubules present in Treponema, and have more than one periplasmic flagellum per cell end and lack the tight coiling which are characteristic of Leptospira. Lyme disease spirochetes are also similar to Borrelia in being microaerophilic, catalase-negative bacteria. They utilize carbohydrates such as glucose as their major carbon and energy sources and produce lactic acid. Long-chain fatty acids are not degraded but are incorporated unaltered into cellular lipids. The diamino amino acid present in the peptidoglycan is ornithine. The mole % guanine plus cytosine values for Lyme disease spirochete DNA were 27.3-30.5 percent. These values are similar to the 28.0-30.5 percent for the Borrelia but differed from the values of 35.3-53 percent for Treponema and Leptospira. DNA reannealing studies demonstrated that Lyme disease spirochetes represent a new species of Borrelia, exhibiting a 31-59 percent DNA homology with the three species of North American borreliae. In addition, these studies showed that the three Lyme disease spirochetes comprise a single species with DNA homologies ranging from 76-100 percent. The three North American borreliae also constitute a single species, displaying DNA homologies of 75-95 per- cent.
    [Show full text]