Quick viewing(Text Mode)

PPT File (PDF)

PPT File (PDF)

International Symposium on

Planetary Science (IAPS2013)

Venue: 3rd floor of Astronomical Building Shanghai Astronomical Observatory, Chinese Academy of Sciences The follow-up observations of several events

Liyun Zhang & Qingfeng Pi

GuiZhou University Outline

• Background • Photometric Observations • Light curve analysis • Transit timing variation analysis • Our future plan

Background

Figure.1 The movie of transit of extra-solar

http://kepler.nasa.gov/ Background

The transit of extroplanet can provide information: Transit time, and duration, its relative radii and

Mass and density

Formation and evolution

Collier Cameron et al., 2007; et c

Background

The study of Transit timing Variation (Diaz et al., 2008; Sozzetti et al., 2009; ) :

• Reveal the effect of other perturbing in the exoplanetary systems (Steffen & Agol 2005)

• Moons of the transiting exoplanet (Szabo et al. 2006; Simon et al., 2007; Kipping et al., 2009ab.)

Our objects

• Targets: – SuperWASP project: WASP-4b, WASP-36b… – HATNet project: HAT-P-10b/WASP-11b, HAT-P- 19b, HAT-P-20b , HAT-P-25b … – CoRoT project: … – XO project: … – Kepler – HD 198733B; Qatar-2b------

Barge et al. 2008., Pollacco et al., 2006; Christian et al. 2006; Borucke et al. 2010…… Observation

– Telescope: 85cm telescope+1Kx1K CCD at Xinglong station of NAOC. – Band:R filter – Time:2012--

Zhou et al., 2010 The light curves

0.05

R band HAT-P-19b 0.10

0.15

0.20 DetaMag

0.25

HAT-P-19b-comparisonal Check star - comparisonal star 0.30 20 21 22 23 24 25 26 Time (UT)

Figure The light curves of serveral extrasolar event. The black represent the different magnitude of our objects and the comparisonal star. The red one represent the different magnitudeof the comparisonal and check star. The light curves

0.05

HAT-P-19b WASP 36 0.6 0.10

0.15

0.7

0.20

DetaMag DetaMag

0.8

0.25

0.30 0.9 20 21 22 23 24 25 26 27 28 29 30

Time (UT) Time (UT) 0.00

HAT-P-25b HAT-P-20b

-0.6 0.05

0.10

-0.5 0.15

DetaMag DetaMag

0.20

HAT-P-25-comparisonal star Check star - comparisonal star -0.4 0.25 26.0 26.5 27.0 27.5 28.0 28.5 29.0 19 20 21 22 23 24 25 Time (UT) Time (UT) The light curves of serveral extrasolar event. The black represent the different magnitude of our objects and the comparisonal star. The red one represent the different magnitudeof the comparisonal and check star. (2013 in preparing) Light curve analysis

• Our transit curves are modeled using the JKTEBOP code and adopting the quadratic limb-darkening law (Southworth 2008, 2009)

• The minimum times and their uncertainties were also determined with the JKTEBOP code and the model parameters .

HAT-P-19b

HAT-P-19b: K1 dwarf star GSC 2283-00589 with period = 4.008778 +/- 0.000006days, a mass of 0.84+/- 0.04 M sun, radius of 0.82+/- 0.05 R sun, (Hartman et al., 2011).

The light curve analysis

0.10 HAT-P-19b

0.12

DelMag 0.14

0.16 Observation Model 56270.05 56270.10 56270.15 56270.20 BJD (2400000+) Figure. The light curves of the observed transits (points) and fitted models (red lines) of the exoplanet systems of HAT-P-19b. Transit parameters of HAT-P-19b

• Our result Hartman2011 • Our Transit minima (BJD) 2456270.1160+/-0.0003 • Our Transit depth: 0.0251 +/- 0.0006 mag • Our Transit width: 162.3 +/- 2 minute 170 +/- 2 minute • Orbital inclination i(deg): 89.836 +/- 4.59 88.2 +/- 0.4 • rA+rb: 0.087 +/- 0.003 • K(=rb/rA): 0.141 +/- 0.002 0.142+/-0.002 • Rms of residuals (mmag) : 3.029 • Reduced chi-dquared form errorbars :4.80

Table.1 Transit and orbital parameters of HAT-P-19b HAT-P-10b

HAT-P-10b/WASP11b: The host star is an early to mid K dwarf, with a spectral analysis yielding mass 0.77 +0.1/-0.08 Msun, stellar radius 0.74 +0.04/ – 0.03 R sun, an effective temperature of 4800+/- 100K (Bakos et al., 2009; West et al., 2009)

The light curve analysis

HAT-P-10b -0.80

-0.78

DelMag -0.76

Observation -0.74 Model

56270.95 56271.00 56271.05 56271.10 BJD (2400000+)

Figure The light curves of the observed transits and fitted models of the exoplanet systemsof HAT-P-10b.

Transit parameters of HAT-P-10b

• Our West2009 Bakos 2009 • Our Transit minima (BJD): 2456271.01479+/-0.00009 • Our Transit depth: 0.0229 +/- 0.0004 mag • Our Transit width: 146.9 +/- 1 minute 153 157 +/- 1minute • Orbital inclination i(deg): 89.931 +/- 8.52 89.8 88.6 +/- 0.45 • rA+rb: 0.088 +/- 0.002 • K(=rb/rA): 0.130+/- 0.002 0.127 0.132 +/- 0.001 • Rms of residuals: (mmag) 3.733 • Reduced chi-squared from errorbars: 11.712

Table.1 Transit and orbital parameters of HAT-P-19b Transit timing variation analysis

• We also collected the minima times from Exoplanet Transit database (Poddany et al., 2010) and AXA (Amateur exoplanet Archieve) .

• The ETD time timings were transformed from HJD based on UTC into TDB-based BJD using the online applets2 developed by Eastman et al (2010).

The O-C diagram The Orbital ephemeris (BJD) of HAT-P-19b: 2455091.5354 +/- 0.0002+ 4.0087788 +/-0.000001

0.010

HAT-P-19b

0.005

0.000

(O-C)

-0.005 ETD Our observation Polynomial fit -0.010 0 50 100 150 200 250 300 Epoch Figure O-C diagrams of the exoplanet systems HAT-P-19b. The O-C diagram The Orbital ephemeris (BJD) of HAT-P-10b: 2454729.9071 +/- 0.0002+ 3.7224810 +/-0.0000009

0.015 HAT-P-10b 0.010 0.005

0.000

(O-C) -0.005

ETD -0.010 Our observation Polynomial fit -0.015 -50 0 50 100 150 200 250 300 350 400 450 Epoch Figure O-C diagrams of the exoplanet systems HAT-P-19b. Conlusion

1. Some orbital parameters of the systems are obtained, which agree to the previous results (West et al. 2009; Bakos et a. 2009; Hellier et al. 2011; etc). 2 . The timing residuals giving a hint about a period change? which might be due to the presence of a second planet in the system or the sporadic asymmetries of transit curves due to starspots on stellar surface used by magnetic activity (Steffen & Agol 2005; Lee et al. 2012; etc).

Future plan

• Monitor the exoplanet transit events using 85 cm and 60 cm telescope at Xinglong station, NAOC.

• Magnetic interaction between an extrasolar planet and its parent star using high-resolution spectra.

• ------

Zhou et al., 2009; Shkolnik et al., 2008)

Thanks Kepler 11 system

Lissauer et al., 2011 Variation of transit period

• Holman et al., 2004 HAT-P-19b

• Hartman J. D., Bakos G. A., Sato B., et al., 2011, Apj, 726, 52

West et al., 2009 WASP11b

HAT-P-10b

HAT-P-10b: 0.487+/-0.018 Mjupiter 1.005+0.032-0.027transiting extrasolar planets GSC 02340-0174 with period P=3.7224747 +/-0.0000065 days, transit epoch 2454759.68683+/-0.00016 and duration 0.109+/- 0.0008days

Bakos G. A., Pal A., Torres G., et al., 2009, APJ, 696, 1950

Bakos et al., 2009

HAT-P-10b

Transit of Extra-solar Planet (Photometry) WASP 43b

• A hot Jupiter transiting a K7V star every 0.81 d. At 0.6 M sun the host star has the lowest mass of any star (15.6 days rotation period). The planet has a mass of 1.8 Jupiter. (Hellier et al., 2011) The light curve analysis

1.14

WASP43 1.16

1.18

1.20 DelMag 1.22 observation Model 1.24 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 Epoch

• The light curves of the observed transits and fitted models of the exoplanet systems. WASP43 WASP 43b O-C

0.015 WASP 43

0.010

0.005

0.000

(O-C) -0.005

ETC -0.010 Our observation Polynomial fit -0.015 0 200 400 600 800 1000 1200 Epoch • 2455528.8685 +/- 0.0001+ 0.81347438 +/- 0.0000002 Transit parameters of WASP 43b

• rA+rb ? • K(=rb/rA) ? • Orbital inclination i(deg) ? • Our Transit minima (BJD) 2456250.4201 +/- 0.0007 • Our Transit depth=0.026 +/- 0.003 mag • Our Transit width= 69.5a • Rms of residuals (mmag) • Reduced chi-squared from errorbars • Epoch: 4.008778 +/- 0.000001 • The Orbital ephemer (BJD) is 2455528.8685 +/- 0.0001+ 0.81347438 +/-0.0000002

• +0.01 Stellar mass=0.77 -0.007M_sun +0.01 Stellar radius=0.81 -0.006R_sun + -0.241 Orbital inclination=89.976 -0.749 deg +0.01 Planet radius=1.02 -0.009R_jup