Abstract Booklet «Detection and Dynamics of Transiting Exoplanets» 23-27 August 2010, Observatoire De Haute Provence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Michael Garcia Hubble Space Telescope Users Committee (STUC)
Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size. -
A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star. -
Arxiv:Astro-Ph/0609369 V2 15 Sep 2006 Ahntnd,54 Ra Rnhr.N,Wsigo DC, Washington NW, Rd
Draft version September 18, 2006 – VERSION Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 12/14/05 HAT-P-1b: A LARGE-RADIUS, LOW-DENSITY EXOPLANET TRANSITING ONE MEMBER OF A STELLAR BINARY† ⋆ G. A.´ Bakos1,2, R. W. Noyes1, G. Kovacs´ 3, D. W. Latham1, D. D. Sasselov1, G. Torres1, D. A. Fischer6, R. P. Stefanik1, B. Sato7, J. A. Johnson8, A. Pal´ 4,1, G. W. Marcy8, R. P. Butler9, G. A. Esquerdo1, K. Z. Stanek10, J. Laz´ ar´ 5, I. Papp5, P. Sari´ 5 & B. Sipocz˝ 4,1 Draft version September 18, 2006 – VERSION Accepted for publication in ApJ ABSTRACT Using small automated telescopes in Arizona and Hawaii, the HATNet project has detected an object transiting one member of the double star system ADS 16402. This system is a pair of G0 main-sequence stars with age about 3 Gyr at a distance of ∼139 pc and projected separation of ∼1550 AU. The transit signal has a period of 4.46529 days and depth of 0.015 mag. From follow-up photometry and spectroscopy, we find that the object is a “hot Jupiter” planet with mass about 0.53 MJ and radius ∼1.36 RJ traveling in an orbit with semimajor axis 0.055 AU and inclination about 85◦.9, thus transiting the star at impact parameter 0.74 of the stellar radius. Based on a data set spanning three years, ephemerides for the transit center are: TC = 2453984.397+ Ntr ∗ 4.46529. The planet, designated HAT-P-1b, appears to be at least as large in radius, and smaller in mean density, than any previously-known planet. -
Space Missions for Exoplanet
Space missions for exoplanet January 3, 2020 Source: The Hindu Manifest pedagogy: As a part of science & technology and geography, questions related to space have been asked both at prelims and mains stage. Finding life in other celestial bodies had always been a human curiosity. Origin of the solar system, exoplanets as prospective resources zone, finding life etc are key objectives of NASA and other space programs. In news: European Space Agency (ESA) has launched CHEOPS exoplanet mission Placing it in syllabus: Exoplanet space missions Static dimensions: What are exoplanets? Current dimensions: Exoplanet missions by NASA Exoplanet missions by ESA and CHEOPS mission Content: What are Exoplanets? The worlds orbiting other stars are called “exoplanets”. They vary in sizes, from gas giants larger than Jupiter to small, rocky planets about as big around as Earth. They can be hot enough to boil metal or locked in deep freeze. They can orbit two suns at once. Some exoplanets are sunless, wandering through the galaxy in permanent darkness. The first exoplanet invented was 51 Pegasi b, a “hot Jupiter” in 1995 which is 50 light-years away that is locked in a four-day orbit around its star. ((The discoverers Didier Queloz and Michel Mayor of 51 Pegasi b shared the 2019 Nobel Prize in Physics for their breakthrough finding)). And a system of three “pulsar planets” had been detected, beginning in 1992. The circumstellar habitable zone (CHZ) also called the Goldilocks zone is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. -
Elements of Astronomy and Cosmology Outline 1
ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the -
Exoplanetary Transits As Seen by Gaia
Highlights of Spanish Astrophysics VII, Proceedings of the X Scientific Meeting of the Spanish Astronomical Society held on July 9 - 13, 2012, in Valencia, Spain. J. C. Guirado, L.M. Lara, V. Quilis, and J. Gorgas (eds.) Exoplanetary transits as seen by Gaia H. Voss1;2, C. Jordi1;2;3, C. Fabricius1;2, J. M. Carrasco1;2, E. Masana1;2, and X. Luri1;2;3 1 IEEC: Institut d'Estudis Espacials de Catalunya 2 ICC-UB: Institut de Ci`encesdel Cosmos de la Universitat de Barcelona 3 UB: Departament d'Astronomia i Meteorologia, Universitat de Barcelona Abstract The ESA cornerstone mission Gaia will be launched in 2013 to begin a scan of about one billion sources in the Milky Way and beyond. During the mission time of 5 years (+ one year extension) repeated astrometric, photometric and spectroscopic observations of the entire sky down to magnitude 20 will be recorded. Therefore, Gaia as an All-Sky survey has enormous potential for discovery in almost all fields of astronomy and astrophysics. Thus, 50 to 200 epoch observations will be collected during the mission for about 1 billion sources. Gaia will also be a nearly unbiased survey for transiting extrasolar planets. Based on latest detection probabilities derived from the very successful NASA Kepler mis- sion, our knowledge about the expected photometric precision of Gaia in the white-light G band and the implications due to the Gaia scanning law, we have analysed how many transiting exoplanets candidates Gaia will be able to detect. We include the entire range of stellar types in the parameter space for our analysis as potential host stars, as they will be observed by Gaia. -
Draft Environmental Assessment
DRAFT ENVIRONMENTAL ASSESSMENT Lucky Minerals (Montana), Inc. Lucky Minerals Project, Park County, MT Exploration License Application #00795 Prepared by Montana Department of Environmental Quality Hard Rock Mining Bureau 1520 East Sixth Avenue PO Box 200901 Helena, MT 59620-0901 October 13, 2016 Table of Contents 1 PURPOSE AND NEED FOR ACTION ........................................................................................... 1 1.1 SUMMARY ................................................................................................................................. 1 1.2 PURPOSE AND NEED ............................................................................................................. 1 1.3 HISTORICAL MINING AND PREVIOUS EXPLORATION DISTURBANCE ................. 2 1.3.1 Emigrant Mining District Chronology (Geologic Systems Ltd., 2015) ....................... 2 1.3.2 St. Julian Claim Block ........................................................................................................ 4 1.4 PROJECT LOCATION............................................................................................................... 4 1.5 AUTHORIZING ACTION ........................................................................................................ 9 1.6 PUBLIC PARTICIPATION ....................................................................................................... 9 1.6.1 SCOPING ........................................................................................................................... -
Space News Update – May 2019
Space News Update – May 2019 By Pat Williams IN THIS EDITION: • India aims to be 1st country to land rover on Moon's south pole. • Jeff Bezos says Blue Origin will land humans on moon by 2024. • China's Chang'e-4 probe resumes work for sixth lunar day. • NASA awards Artemis contract for lunar gateway power. • From airport to spaceport as UK targets horizontal spaceflight. • Russian space sector plagued by astronomical corruption. • Links to other space and astronomy news published in May 2019. Disclaimer - I claim no authorship for the printed material; except where noted (PW). INDIA AIMS TO BE 1ST COUNTRY TO LAND ROVER ON MOON'S SOUTH POLE India will become the first country to land a rover on the Moon's the south pole if the country's space agency "Indian Space Research Organisation (ISRO)" successfully achieves the feat during the country's second Moon mission "Chandrayaan-2" later this year. "This is a place where nobody has gone. All the ISRO missions till now to the Moon have landed near the Moon's equator. Chandrayaan-2, India’s second lunar mission, has three modules namely Orbiter, Lander (Vikram) & Rover (Pragyan). The Orbiter and Lander modules will be interfaced mechanically and stacked together as an integrated module and accommodated inside the GSLV MK-III launch vehicle. The Rover is housed inside the Lander. After launch into earth bound orbit by GSLV MK-III, the integrated module will reach Moon orbit using Orbiter propulsion module. Subsequently, Lander will separate from the Orbiter and soft land at the predetermined site close to lunar South Pole. -
Jason A. Dittmann 51 Pegasi B Postdoctoral Fellow
Jason A. Dittmann 51 Pegasi b Postdoctoral Fellow Contact Massachusetts Institute of Technology MIT Kavli Institute: 37-438f 617-258-5928 (office) 70 Vassar St. 520-820-0928 (cell) Cambridge, MA 02139 [email protected] Education Harvard University, Cambridge, MA PhD, Astronomy and Astrophysics, May 2016 Advisor: David Charbonneau, PhD • University of Arizona, Tucson, AZ BS, Astronomy, Physics, May 2010 Advisor: Laird Close, PhD • Recent 51 Pegasi b Postdoctoral Fellow July 2017 – Present Research Earth and Planetary Science Department, MIT Positions Faculty Contact: Sara Seager Postdoctoral Researcher Feb 2017 – June 2017 Kavli Institute, MIT Supervisor: Sarah Ballard Postdoctoral Researcher July 2016 – Jan 2017 Center for Astrophysics, Harvard University Supervisor: David Charbonneau Research Assistant Sep 2010 – May 2016 Center for Astrophysics, Harvard University Advisors: David Charbonneau Publication 16 first and second authored publications Summary 22 additional co-authored publications 1 first-authored publication in Nature 1 co-authored publication in Nature Selected 51 Pegasi b Postdoctoral Fellowship 2017 – Present Awards and Pierce Fellowship 2010 – 2013 Honors Certificate of Distinction in Teaching 2012 Best Project Award, Physics Ugrd. Research Symp. 2009 Best Undergraduate Research (Steward Observatory) 2009 – 2010 Grants Principal Investigator, Hubble Space Telescope 2017, 10 orbits Awarded “Initial Reconaissance of a Transiting Rocky (maximum award) Planet in a Nearby M-Dwarf’s Habitable Zone” Principal Investigator, -
Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report
EXO Exoplanet Exploration Collaboration Initiative TP Exoplanets Final Report Ca Ca Ca H Ca Fe Fe Fe H Fe Mg Fe Na O2 H O2 The cover shows the transit of an Earth like planet passing in front of a Sun like star. When a planet transits its star in this way, it is possible to see through its thin layer of atmosphere and measure its spectrum. The lines at the bottom of the page show the absorption spectrum of the Earth in front of the Sun, the signature of life as we know it. Seeing our Earth as just one possibly habitable planet among many billions fundamentally changes the perception of our place among the stars. "The 2014 Space Studies Program of the International Space University was hosted by the École de technologie supérieure (ÉTS) and the École des Hautes études commerciales (HEC), Montréal, Québec, Canada." While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. Electronic copies of the Final Report and the Executive Summary can be downloaded from the ISU Library website at http://isulibrary.isunet.edu/ International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden Tel +33 (0)3 88 65 54 30 Fax +33 (0)3 88 65 54 47 e-mail: [email protected] website: www.isunet.edu France Unless otherwise credited, figures and images were created by TP Exoplanets. Exoplanets Final Report Page i ACKNOWLEDGEMENTS The International Space University Summer Session Program 2014 and the work on the -
What Is CHEOPS?
Swiss and ESA satellite CHEOPS launching soon! CHEOPS will be launching into space on the 17th of December! You may be wondering: what is CHEOPS? CHEOPS stands for CHaracterising ExOPlanet Satellite. Its goal is to study transits of already-known exoplanets to gain more knowledge about them. What type of information are we looking for? Scientists want to know detailed information about planets outside our Solar System, such as the mass, planet size, and density, which will in turn help to figure out the composition of these exoplanets. Studying exoplanet composition and their atmospheres is important especially for astrobiology. A planet’s chemical composition can affect its habitability for life as we know it. Scientists usually look for biosignatures such as the presence of methane or oxygen in the planet’s atmosphere, which could indicate presence of past or present life. Artist’s impression of CHEOPS. Credits: ESA / ATG medialab. The major contributors CHEOPS is a collaboration between ESA and the Swiss Space Office. The mission was proposed and is now headed by Prof. Willy Benz, from the University of Bern, which houses the mission’s consortium. The science operations consortium is at the University of Geneva, where they have many collaborators, such as the Swiss Space Center at EPFL. As it is an ESA endeavour, many other European institutions are also contributing to the mission. For example, the mission operations consortium is located in Torrejón de Ardoz, Spain. The launch The satellite has already been shipped to Kourou, French Guiana, where it will be launched by the ESA spaceport. -
Exoplanet Detection Techniques
Exoplanet Detection Techniques Debra A. Fischer1, Andrew W. Howard2, Greg P. Laughlin3, Bruce Macintosh4, Suvrath Mahadevan5;6, Johannes Sahlmann7, Jennifer C. Yee8 We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instru- mentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit pho- tometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions. Subject headings: 1. Introduction tary; in practice, they are not generally applied to the same sample of stars, so our detection of exoplanet architectures Humans have long wondered whether other solar sys- has been piecemeal. The explored parameter space of ex- tems exist around the billions of stars in our galaxy. In the oplanet systems is a patchwork quilt that still has several past two decades, we have progressed from a sample of one missing squares. to a collection of hundreds of exoplanetary systems. Instead of an orderly solar nebula model, we now realize that chaos 2.