Hatsouth: a Global Network of Fully Automated Identical Wide-Field Telescopes1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:Astro-Ph/0609369 V2 15 Sep 2006 Ahntnd,54 Ra Rnhr.N,Wsigo DC, Washington NW, Rd
Draft version September 18, 2006 – VERSION Accepted for publication in ApJ A Preprint typeset using LTEX style emulateapj v. 12/14/05 HAT-P-1b: A LARGE-RADIUS, LOW-DENSITY EXOPLANET TRANSITING ONE MEMBER OF A STELLAR BINARY† ⋆ G. A.´ Bakos1,2, R. W. Noyes1, G. Kovacs´ 3, D. W. Latham1, D. D. Sasselov1, G. Torres1, D. A. Fischer6, R. P. Stefanik1, B. Sato7, J. A. Johnson8, A. Pal´ 4,1, G. W. Marcy8, R. P. Butler9, G. A. Esquerdo1, K. Z. Stanek10, J. Laz´ ar´ 5, I. Papp5, P. Sari´ 5 & B. Sipocz˝ 4,1 Draft version September 18, 2006 – VERSION Accepted for publication in ApJ ABSTRACT Using small automated telescopes in Arizona and Hawaii, the HATNet project has detected an object transiting one member of the double star system ADS 16402. This system is a pair of G0 main-sequence stars with age about 3 Gyr at a distance of ∼139 pc and projected separation of ∼1550 AU. The transit signal has a period of 4.46529 days and depth of 0.015 mag. From follow-up photometry and spectroscopy, we find that the object is a “hot Jupiter” planet with mass about 0.53 MJ and radius ∼1.36 RJ traveling in an orbit with semimajor axis 0.055 AU and inclination about 85◦.9, thus transiting the star at impact parameter 0.74 of the stellar radius. Based on a data set spanning three years, ephemerides for the transit center are: TC = 2453984.397+ Ntr ∗ 4.46529. The planet, designated HAT-P-1b, appears to be at least as large in radius, and smaller in mean density, than any previously-known planet. -
A DESCRIPTION of FOUR FAST SLITLESS SPECTROGRAPHS by Gale A
A DESCRIPTION OF FOUR FAST SLITLESS SPECTROGRAPHS by Gale A. Hawey kngley Research Ceater Langley IStation, Hampton, Va. I .I NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTO 0CT.OBER 1967 , 8l .~ -. .y-; $. .Ir* *. r., \. ',r <'. /. ., ..., I 5,, 2 .,i c, . B TECH LIBRARY KAFB, NM . -- 0130742 NASA TN D-4145 A DESCRIPTION OF FOUR FAST SLITLESS SPECTROGRAPHS By Gale A. Harvey Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 A DESCRIPTION OF FOUR FAST SLITLESS SPECTROGRAPHS By Gale A. Harvey Langley Research Center SUMMARY A description, comparison, and short discussion of four fast slitless spectrographs for use in low-light-level research are given. The spectrographs include three catadiop- tric systems, the Super Schmidt meteor camera, the Baby Schmidt, and the Maksutov and one refractive optical system, the Super Farron. The Baby Schmidt and the Maksutov systems have fused-silica transmission elements. Except for the Super Schmidt camera, which utilizes a light flint mosaic prism, all systems utilize objective transmission dif- fraction gratings. The four systems discussed have low-light-level spectroscopic recording capability, The Super Schmidt has the largest field, 57'; the Baby Schmidt and Maksutovs have the broadest effective spectral range (3200 angstroms to 9500 angstroms); and the Super Farron features the greatest versatility and portability. INTRODUCTION A spectrograph is an apparatus which effects dispersion of radiation for photo- graphic recording. A slitless spectrograph consists basically of a dispersion element, prism, or grating, placed over the entrance of a camera so that images or the radiation source rather than the entrance slit of the more customary slit spectrograph are formed. -
A Theory of Catadioptric Image Formation * Simon Baker and Shree K
A Theory of Catadioptric Image Formation * Simon Baker and Shree K. Nayar Department of Computer Science Columbia University New York, NY 10027 Abstract able is that it permits the generation of geometrically Conventional video cameras have limited fields of correct perspective images from the image(s) captured view which make them restrictive for certain applica- by the catadioptric cameras. These perspective images tions in computational vision. A catadioptric sensor can subsequently be processed using the vast array of uses a combination of lenses and mirrors placed in techniques developed in the field of computational vi- a carefully arranged configuration to capture a much sion which assume perspective projection. Moreover, if wider field of view. When designing a catadioptric sen- the image is to be presented to a human, as in [Peri sor, the shape of the mirror.(s) should ideally be selected and Nayar, 19971, it needs to be a perspective image in to ensure that the complete catadioptric system has a order to not appear distorted. single effective viewpoint. In this paper, we derive the In this paper, we begin in Section 2 by deriving the complete class of single-lens single-mirror catadioptric entire class of catadioptric systems with a single effec- sensors which have a single viewpoint and an expres- tive viewpoint and which are constructed just using a sion for the spatial resolution of a catadioptric sensor single conventional lens and a single mirror. As we will in terms of the resolution of the camera used to con- show, the 2-parameter family of mirrors which can be struct it. -
ALD13 Advanced Lens Design 13
Advanced Lens Design Lecture 13: Mirror systems 2013-01-21 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule Paraxial optics, ideal lenses, optical systems, raytrace, 1 15.10. Introduction Zemax handling Basic principles, paraxial layout, thin lenses, transition to 2 22.10. Optimization I thick lenses, scaling, Delano diagram, bending 3 29.10. Optimization II merit function requirements, effectiveness of variables 4 05.11. Optimization III complex formulations, solves, hard and soft constraints zero operands, lens splitting, aspherization, cementing, lens 5 12.11. Structural modifications addition, lens removal Geometrical aberrations, wave aberrations, PSF, OTF, sine 6 19.11. Aberrations and performance condition, aplanatism, isoplanatism spherical correction with aspheres, Forbes approach, 7 26.11. Aspheres and freeforms distortion correction, freeform surfaces, optimal location of aspheres, several aspheres 8 03.12. Field flattening thick meniscus, plus-minus pairs, field lenses Achromatization, apochromatic correction, dialyt, Schupman 9 10.12. Chromatical correction principle, axial versus transversal, glass selection rules, burried surfaces 10 17.12. Special topics symmetry, sensitivity, anamorphotic lenses high NA systems, broken achromates, Merte surfaces, AC 11 07.01. Higher order aberrations meniscus lenses Advanced optimization local optimization, control of iteration, global approaches, 12 14.01. strategies growing requirements, AC-approach of Shafer 13 21.01. Mirror systems special aspects, bending of ray paths, catadioptric systems color correction, straylight suppression, third order 14 28.01. Diffractive elements aberrations 15 04.02. Tolerancing and adjustment tolerances, procedure, adjustment, compensators 3 Contents 1. General properties 2. Image orientation 3. Telescope systems 4. Further Examples 4 General Properties of Mirror Systems . -
Exoplanet Detection Techniques
Exoplanet Detection Techniques Debra A. Fischer1, Andrew W. Howard2, Greg P. Laughlin3, Bruce Macintosh4, Suvrath Mahadevan5;6, Johannes Sahlmann7, Jennifer C. Yee8 We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Reaching these ambitious goals will require further improvements in instru- mentation and new analysis tools. In this chapter, we provide an overview of five observational techniques that are currently employed in the detection of exoplanets: optical and IR Doppler measurements, transit pho- tometry, direct imaging, microlensing, and astrometry. We provide a basic description of how each of these techniques works and discuss forefront developments that will result in new discoveries. We also highlight the observational limitations and synergies of each method and their connections to future space missions. Subject headings: 1. Introduction tary; in practice, they are not generally applied to the same sample of stars, so our detection of exoplanet architectures Humans have long wondered whether other solar sys- has been piecemeal. The explored parameter space of ex- tems exist around the billions of stars in our galaxy. In the oplanet systems is a patchwork quilt that still has several past two decades, we have progressed from a sample of one missing squares. to a collection of hundreds of exoplanetary systems. Instead of an orderly solar nebula model, we now realize that chaos 2. -
X. Huang, G. Á. Bakos and J. A. Hartman [email protected]
Using Kepler as a Calibrator X. Huang, G. Á. Bakos and J. A. Hartman [email protected] PROBLEM OBSERVATION The HATNet project is a wide-field ground-based search for transiting plan- ets around moderately bright stars. Like other wide-field ground-based transit sur- veys, HATNet is primarily sensitive to gas giant planets with orbital periods less than 10 days. The detection of smaller and longer pe- riod planets are difficult because of the fol- lowing aspects. 1. Large gap in time series, either due to rotation of earth, or inclement weather conditions. 2. Data quality is highly variable due The Kepler field was observed by HAT- period smaller than 20 days and size bigger to changing extinction, clouds, back- Net prior to the launch of the mission. The than Neptune in the center field G154. We ground, seeing, etc. whole Kepler field is overlapped with five use this sample to calibrate a new transit de- 3. The per-point photometry precision is HATNet fields in total. We select Kepler tection pipeline. worse compare to space based obser- planet candidates (Batalha et al.(2013)) with vations. The high quality light curves from Kepler mission provide a valuable opportunity for EXAMPLE HAT LIGHT CURVES RESULT us to improve our yield of smaller and longer We yield robust detections for Kepler period planets. -0.01 HAT1998264, unbinned candidates that were previously not selected HAT1998264, binned average -0.005 KOI12.01, binned average by HATNet (for instance, see the exam- 0 mag ple light curves of KOI12.01,KOI18.01 and METHOD 6 0.005 0.01 KOI98.01). -