Foraging Behaviour of the Particle Phenomenologist

Total Page:16

File Type:pdf, Size:1020Kb

Foraging Behaviour of the Particle Phenomenologist Foraging Behaviour of the Particle Phenomenologist A Broad Exploration of Physics Beyond the Standard Model A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Wee Hao Ng December 2018 c 2018 Wee Hao Ng ALL RIGHTS RESERVED Foraging Behaviour of the Particle Phenomenologist A Broad Exploration of Physics Beyond the Standard Model Wee Hao Ng, Ph.D. Cornell University 2018 Despite its numerous successes, the Standard Model (SM) of particle physics is known to be incomplete. In this thesis, we explore a variety of topics regarding physics beyond the SM (BSM). In the minimal supersymmetric Standard Model (MSSM), the leptons and Higgs have separate superpartners; however, it is possible to construct a model where the Higgs is the superpartner of one generation of left-handed leptons. In Chapter 2, we explore various implications of this Higgs-as-slepton model, in par- ticular on electroweak precision and neutrino experiments. In Chapter 3, we use the model to explain various excesses reported in leptoquark and W 0 searches by the CMS experiment in 2014. These excesses were observed in electron but not muon channels, hence suggesting the violation of lepton universality, a hallmark of the model. In Chapter 4, we propose a supersymmetric left-right symmetric (SUSY LRS) model that can explain various excesses reported in W 0 searches by the CMS and ATLAS experiments around 2014–2015, but at the same time generate a large tree-level Higgs mass, hence resolving the usual issue of the Higgs mass being too small in the MSSM. In the most basic SUSY LRS model, a large Higgs mass also requires a large tan β (the ratio of the two Higgs vacuum expectation values in the model), whereas the excesses seem to favour a smaller value. We resolve this tension by introducing heavy down-type vector-like quarks that mix with the light quarks; a large tan β can now still remain consistent with the excesses. Lepton flavour models based on A4 symmetry are popular because they pre- dict a tri-bimaximal mixing pattern for the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, often regarded to be in good agreement with experimental mea- surements. However, recent results from the Daya Bay and RENO experiments have shown that the θ13 angle of the matrix is rather large, contrary to the pre- dicted mixing pattern. We investigate in Chapter 5 whether a model based on the SO(3) A4 symmetry-breaking pattern can accommodate these recent results. ! The enlargement to SO(3) is intended to motivate the A4 from a UV completion standpoint. We find that contrary to typical A4 models, the SO(3) A4 model ! does generally predict a large θ13 due to mixing in the charged-lepton sector. In Chapter 6, we present a new mechanism for freeze-out dark matter which we call co-annihilation. This differs from most freeze-out mechanisms in that depletion is driven not by Boltzmann suppression, but by out-of-equilibrium decay that eventually “switches off”. Such a model is hard to probe using direct detection and collider production experiments, but should present enhanced indirect detection signatures. Hydrogen-antihydrogen (H-H)¯ oscillations are forbidden in the SM and hence represent signs of new physics. In the interstellar medium (ISM), any H atom that oscillates into H¯ may subsequently undergo annihilation with other atoms, producing γ-rays that can be detected in astronomical surveys. While a bound on these oscillations was originally derived by Feinberg et al., we re-evaluate the bound in Chapter 7 using a more comprehensive theoretical framework, a multiphase description of the ISM, as well as recent γ-ray data from the Fermi Large Area Telescope. Biographical Sketch Wee Hao Ng grew up in Singapore, and read physics at Oxford University in the early 2000s. After a short stint in military service, he spent a few year working in an applied physics laboratory, before coming over to Cornell in the early 2010s. He enjoys spending long hours out in nature by himself, except for the company of wildlife, and cares deeply about conservation issues. Since this thesis will eventually become public domain, due to concerns over privacy and identity theft, he would rather avoid overly-specific details in this biographical sketch. Actually he did write a more detailed version, but subsequently found it too self-aggrandising to his liking. iii To my family. iv Acknowledgements Acknowledgements are hard to write, since there will always be someone whom I sincerely want to thank but had happened to slip my mind at the moment of writing. First and foremost, I owe much to my advisor, Prof. Yuval Grossman. His unflappable sense of humour, as well as continued support despite being aware of my decision to cross over to conservation, made what would otherwise have been a difficult journey much lighter. Along with Yuval, I would like to thank LEPP theory and experiment faculty Prof. Jim Alexander, Csaba Csaki, Lawrence Gib- bons, Thomas Hartman, Liam McAllister, Maxim Perelstein and Peter Wittich, as well as LEPP theory postdocs Marco Farina, Eric Kuflik and Paul McGuirk, from whom I learnt much about particle physics and quantum field theory. Extra shout out to Csaba and Maxim for providing the bedrock of my knowledge, and to Jim for always being there as a listening ear. Among my fellow LEPP theory graduate students, a special mention to my number one collaborator Jeff Dror. Our partnership, in which you would throw out wild ideas to which I would then play Devil’s advocate, had borne surprising fruit, and would probably have continued to do so had I not made the cross-over decision. I am also grateful to Nima Afkhami-Jeddi, Thomas Bachlechner, Mathieu Cliche, Jack Collins, Mehmet Demirtas, Gowri Kurup, Salvator Lombardo, Cody Long, Mario Martone, Mitrajyoti Ghosh, Nicholas Rey-Le Lorier, Mike Saelim, Mike Savastio, John Stout, Amirhossein Tajdini, Ofri Telem and Yu-dai Tsai for being great colleagues whom I can have engaging discussions with. On the teaching side, I am extremely grateful for the fact that my interactions as a TA with the professors have been consistently positive. Besides Yuval, Jim and Peter, I also like to acknowledge LEPP faculty Prof. Ivan Bazarov and Andre v LeClair, LASSP faculty Prof. Kin Fai Mak and Eric Mueller, and Math department faculty Prof. Alex Townsend. For administrative support, I can always count on Kacey Acquilano, Debra Hatfield and Katerina Malysheva to make sure that I don’t mess things up. Also, it would be remiss of me not to mention the cheerfulness and leadership the ad- ministrative director Craig Wiggers has brought to the department. Last but certainly not least, I would like to thank my friends here at Cornell: Robin Bjorkquist, Jennifer Chu, Azar Eyvazov, Jun Wei Lam, Jordan Moxon and Shao Min Tan, as well as my family and friends back home in Singapore, for your unwavering emotional support. Life would have been very different without you. vi Table of Contents Biographical Sketch . iii Dedication . iv Acknowledgements . .v Table of Contents . vii 1 Introduction 1 1.1 Why high-energy physics? . .1 1.2 Chapter synopsis . .5 1.2.1 The Higgs as the slepton (Chapters 2 and 3) . .5 1.2.2 Supersymmetric left-right symmetric models and the 2 TeV diboson excess (Chapter 4) . 11 1.2.3 θ13 in A4 lepton models (Chapter 5) . 14 1.2.4 Co-decaying dark matter (Chapter 6) . 17 1.2.5 Hydrogen-antihydrogen oscillations in the interstellar medium (Chapter 7) . 21 2 Probing a slepton Higgs on all frontiers 26 2.1 Introduction . 26 2.2 The basics of Higgs-as-slepton models . 30 2.3 Limits on gaugino-electron doublet mixing . 34 2.4 Discovery potential at an e+e− collider . 36 2.4.1 e+e− W +W − ......................... 37 2.4.2 e+e− ! ZZ ........................... 39 2.4.3 e+e− ! hZ ........................... 39 ! 2.5 UPMNS and the need for a TeV-scale cutoff . 40 2.5.1 L = 1; 0; 1 ........................... 42 2.5.2 L =6 − 1 .............................. 46 2.5.3 L = 0 .............................. 48 2.5.4 L = 1 ............................. 49 2.5.5 2HDM− Higgs-as-slepton model . 50 2.6 Neutrino masses, proton decay and the gravitino mass . 52 2.6.1 Bounds from neutrino masses . 53 2.6.2 Upper bounds from proton decay . 54 2.7 Conclusions . 58 2.A Feynman rules . 60 2.A.1 Mixing matrices . 60 2.A.2 Couplings for Yukawa interactions . 62 2.A.3 Couplings for gauge interactions . 63 2.B Two Higgs Doublet Model . 66 vii 3 Sneutrino Higgs models explain lepton non-universality in CMS excesses 68 3.1 Introduction . 68 3.2 Model with Higgs as a slepton . 72 3.2.1 Overview . 72 3.2.2 Chargino and neutralino mass matrices and mixing . 75 3.2.3 First-generation left-handed squark decays . 76 3.3 Simulation and Results . 78 3.4 Discussion and Conclusions . 82 4 A 2 TeV WR, Supersymmetry, and the Higgs Mass 84 4.1 Introduction . 84 4.2 The Model . 88 4.2.1 Non-Decoupling D-terms . 90 4.2.2 Exotic Quarks . 92 4.3 Results and Discussion . 94 4.3.1 Implications for the Z0 and stops . 100 4.4 Flavour constraints . 103 4.4.1 Tree-level Z0 FCNCs . 104 4.5 Conclusions . 106 4.A W 0 and Z0 couplings and partial widths . 110 4.B Non-Decoupling D-terms and Fine Tuning . 112 4.C Flavour constraints: Additional details .
Recommended publications
  • On the Mass Spectrum of Exotic Protonium Atom in Oscillator Representation Method
    International Journal of Advanced Science and Technology Vol.74 (2015), pp.43-48 http://dx.doi.org/10.14257/ijast.2015.74.05 On the Mass Spectrum of Exotic Protonium Atom in Oscillator Representation Method Arezu Jahanshir Assistant professor and faculty member of Bueinzahra Technical University, Iran [email protected] Abstract In the given paper one determines the constituent mass of the bound state and binding energy of hadronic exotic system, according to the basis investigation of the asymptotically behavior of the loop function of scalar particles in the external electromagnet field are analytically determined exploration of these states through relativistic and non-perturbative corrections. It is shown that, the mass spectrum of a relativistic bound state of protonium consisting from proton and anti-proton is differing from a mass of initial particles. Keywords: protonium, constituent mass, Hamiltonian, Green function, scalar particles 1. Introduction All of theoretical high energy physician by using mathematical methods and new theories try to understand how bound state arise in the formalism of quantum field theory and to work out effective methods to calculate all characteristics of these bound states, especially their masses, binding energy and spin interactions. The analysis of a bound state is difficult when the interaction have to be considered as relativistic, i.e. when they travel at speeds considerably near the "c". The theoretical criterion is that the coupling constant should be strong [1-6] and masses of intermediate particles gluons in quantum chromodynamic should be big in comparison with masses of constituents. New importance to the exotic hadronic bound state physics was given by the development of quantum chromodynamic, the modern theory of strong interactions.
    [Show full text]
  • Progress and Simulations for Intranuclear Neutron-Antineutron 40Ar Transformations in 18 Joshua L
    PHYSICAL REVIEW D 101, 036008 (2020) Progress and simulations for intranuclear neutron-antineutron 40Ar transformations in 18 Joshua L. Barrow * The University of Tennessee at Knoxville, Department of Physics and Astronomy, † 1408 Circle Drive, Knoxville, Tennessee 37996, USA ‡ Elena S. Golubeva and Eduard Paryev§ Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia ∥ Jean-Marc Richard Institut de Physique des 2 Infinis de Lyon, Universit´e de Lyon, CNRS-IN2P3–UCBL, 4 rue Enrico Fermi, Villeurbanne 69622, France (Received 10 June 2019; accepted 29 January 2020; published 18 February 2020) With the imminent construction of the Deep Underground Neutrino Experiment (DUNE) and Hyper- Kamiokande, nucleon decay searches as a means to constrain beyond standard model extensions are once again at the forefront of fundamental physics. Abundant neutrons within these large experimental volumes, along with future high-intensity neutron beams such as the European Spallation Source, offer a powerful, high-precision portal onto this physics through searches for B and B − L violating processes such as neutron-antineutron transformations (n → n¯), a key prediction of compelling theories of baryogenesis. With this in mind, this paper discusses a novel and self-consistent intranuclear simulation of this process 40 within 18Ar, which plays the role of both detector and target within the DUNE’s gigantic liquid argon time projection chambers. An accurate and independent simulation of the resulting intranuclear annihilation respecting important physical correlations and cascade dynamics for this large nucleus is necessary to understand the viability of such rare searches when contrasted against background sources such as atmospheric neutrinos.
    [Show full text]
  • Exotic Double-Charm Molecular States with Hidden Or Open Strangeness and Around 4.5 ∼ 4.7 Gev
    PHYSICAL REVIEW D 102, 094006 (2020) Exotic double-charm molecular states with hidden or open strangeness and around 4.5 ∼ 4.7 GeV † Fu-Lai Wang and Xiang Liu * School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China and Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China (Received 1 September 2020; accepted 16 October 2020; published 10 November 2020) à In this work, we investigate the interactions between the charmed-strange meson (Ds;Ds )inH-doublet à and the (anti-)charmed-strange meson (Ds1;Ds2)inT-doublet, where the one boson exchange model is adopted by considering the S-D wave mixing and the coupled-channel effects. By extracting the effective ¯ potentials for the discussed HsTs and HsTs systems, we try to find the bound state solutions for the corresponding systems. We predict the possible hidden-charm hadronic molecular states with hidden à ¯ PC 0−− 0−þ à ¯ à strangeness, i.e., the Ds Ds1 þ c:c: states with J ¼ ; and the Ds Ds2 þ c:c: states with PC −− −þ J ¼ 1 ; 1 . Applying the same theoretical framework, we also discuss the HsTs systems. Unfortunately, the existence of the open-charm and open-strange molecular states corresponding to the HsTs systems can be excluded. DOI: 10.1103/PhysRevD.102.094006 ¯ ðÞ I. INTRODUCTION strong evidence to support these Pc states as the ΣcD - – Studying exotic hadronic states, which are very type hidden-charm pentaquark molecules [10 16]. different from conventional mesons and baryons, is an Before presenting our motivation, we first need to give a intriguing research frontier full of opportunities and chal- brief review of how these observed XYZ states were lenges in hadron physics.
    [Show full text]
  • Antiproton–Proton Scattering Experiments with Polarization ( Collaboration) PAX Abstract
    Technical Proposal for Antiproton–Proton Scattering Experiments with Polarization ( Collaboration) PAX arXiv:hep-ex/0505054v1 17 May 2005 J¨ulich, May 2005 2 Technical Proposal for PAX Frontmatter 3 Technical Proposal for Antiproton–Proton Scattering Experiments with Polarization ( Collaboration) PAX Abstract Polarized antiprotons, produced by spin filtering with an internal polarized gas target, provide access to a wealth of single– and double–spin observables, thereby opening a new window to physics uniquely accessible at the HESR. This includes a first measurement of the transversity distribution of the valence quarks in the proton, a test of the predicted opposite sign of the Sivers–function, related to the quark dis- tribution inside a transversely polarized nucleon, in Drell–Yan (DY) as compared to semi–inclusive DIS, and a first measurement of the moduli and the relative phase of the time–like electric and magnetic form factors GE,M of the proton. In polarized and unpolarized pp¯ elastic scattering, open questions like the contribution from the odd charge–symmetry Landshoff–mechanism at large t and spin–effects in the extraction | | of the forward scattering amplitude at low t can be addressed. The proposed de- | | tector consists of a large–angle apparatus optimized for the detection of DY electron pairs and a forward dipole spectrometer with excellent particle identification. The design and performance of the new components, required for the polarized antiproton program, are outlined. A low–energy Antiproton Polarizer Ring (APR) yields an antiproton beam polarization of Pp¯ = 0.3 to 0.4 after about two beam life times, which is of the order of 5–10 h.
    [Show full text]
  • Plasma Physics and Fusion Research Royal Institute of Technology S-100 44 Stockholm Sweden Trita-Pfu-91-05
    ISSN 0348-7644 TRITA-PFU-91-05 NEUTRON TIME-OF-FLIGHT COUNTERS AND SPECTROMETERS FOR DIAGNOSTICS OF BURNING FUSION PLASMAS T. Elevant and M. Olsson Research and Training Programme on CONTROLLED THERMONUCLEAR FUSION AND PLASMA PHYSICS (EUR-NFR) PLASMA PHYSICS AND FUSION RESEARCH ROYAL INSTITUTE OF TECHNOLOGY S-100 44 STOCKHOLM SWEDEN TRITA-PFU-91-05 NEUTRON TIME-OF-FLIGHT COUNTERS AND SPECTROMETERS FOR DIAGNOSTICS OF BURNING FUSION PLASMAS T. Elevant and M. Olsson Stockholm, February 1991 Department of Plasma Physics and Fusion Research Royal Institute of Technology 5-100 44 Stockholm, Sweden Neutron Time-of-Flight Counters and Spectrometers for Diagnostics of burning Fusion Plasmas. T. Elevant and M. Olsson. Department of Plasma Physics and Fusion Research, The Royal Institute of Technology, S-10044 Stockholm, Sweden. ABSTRACT Experiment with burning fusion plasmas in tokamaks will place particular requirements on neutron measurements from radiation resistance-, physics-, burn control- and reliability considerations. The possibility to meet these needs by measurements of neutron fluxes and energy spectra by means of time-of-flight techniques are described. Reference counters and spectrometers are proposed and characterized with respect to efficiency, count-rate capabilities, energy resolution and tolerable neutron and y-radiation background levels. The instruments can be used in a neutron camera and are capable to operate in collimated neutron fluxes up to levels corresponding to full nuclear output power in the next generation of experiments. Energy resolutions of the spectrometers enables determination of ion temperatures from 3 [keV] through analysis of the Doppler broadening. Primarily, the instruments are aimed for studies of 14 [MeV] neutrons produced in [d,t]-plasmas but can, after minor modifications, be used for analysis of 2.45 [McV] neutrons produced in [d,d]-plasmas.
    [Show full text]
  • Printed Here
    PHYSICAL REVIEW C, VOLUME 66, NUMBER 3 Selected Abstracts from Other Physical Review Journals Abstracts of papers which are published in other Physical Review journals and may be of interest to Physical Review C readers are printed here. The Editors of Physical Review C routinely scan the abstracts of Physical Review D papers. Appropriate abstracts of papers in other Physical Review journals may be included upon request. Supernova neutrinos and the LSND evidence for neutrino oscil- We present a study of inhomogeneous big bang nucleosynthesis lations. Michel Sorel and Janet Conrad, Department of Physics, with emphasis on transport phenomena. We combine a hydrody- Columbia University, New York, New York 10027. ͑Received 15 namic treatment to a nuclear reaction network and compute the light December 2001; published 23 August 2002͒ element abundances for a range of inhomogeneity parameters. We ®nd that shortly after annihilation of electron-positron pairs, Thom- Å The observation of the ␯e energy spectrum from a supernova son scattering on background photons prevents the diffusion of the burst can provide constraints on neutrino oscillations. We derive remaining electrons. Protons and multiply charged ions then tend to formulas for adiabatic oscillations of supernova antineutrinos for a diffuse into opposite directions so that no net charge is carried. Ions variety of 3- and 4-neutrino mixing schemes and mass hierarchies with ZϾ1 get enriched in the overdense regions, while protons which are consistent with the Liquid Scintillation Neutrino Detector diffuse out into regions of lower density. This leads to a second Å →Å ͑LSND͒ evidence for ␯␮ ␯e oscillations. Finally, we explore the burst of nucleosynthesis in the overdense regions at TϽ20 keV, constraints on these models and LSND given by the supernova SN leading to enhanced destruction of deuterium and lithium.
    [Show full text]
  • Building the Full Pontecorvo-Maki-Nakagawa-Sakata Matrix from Six Independent Majorana-Type Phases
    PHYSICAL REVIEW D 79, 013001 (2009) Building the full Pontecorvo-Maki-Nakagawa-Sakata matrix from six independent Majorana-type phases Gustavo C. Branco1,2,* and M. N. Rebelo1,3,4,† 1Departamento de Fı´sica and Centro de Fı´sica Teo´rica de Partı´culas (CFTP), Instituto Superior Te´cnico (IST), Av. Rovisco Pais, 1049-001 Lisboa, Portugal 2Departament de Fı´sica Teo`rica and IFIC, Universitat de Vale`ncia-CSIC, E-46100, Burjassot, Spain 3CERN, Department of Physics, Theory Unit, CH-1211, Geneva 23, Switzerland 4NORDITA, Roslagstullsbacken 23, SE-10691, Stockholm, Sweden (Received 6 October 2008; published 7 January 2009) In the framework of three light Majorana neutrinos, we show how to reconstruct, through the use of 3 Â 3 unitarity, the full PMNS matrix from six independent Majorana-type phases. In particular, we express the strength of Dirac-type CP violation in terms of these Majorana-type phases by writing the area of the unitarity triangles in terms of these phases. We also study how these six Majorana phases appear in CP-odd weak-basis invariants as well as in leptonic asymmetries relevant for flavored leptogenesis. DOI: 10.1103/PhysRevD.79.013001 PACS numbers: 14.60.Pq, 11.30.Er independent parameters. It should be emphasized that I. INTRODUCTION these Majorana phases are related to but do not coincide The discovery of neutrino oscillations [1] providing with the above defined Majorana-type phases. The crucial evidence for nonvanishing neutrino masses and leptonic point is that Majorana-type phases are rephasing invariants mixing, is one of the most exciting recent developments in which are measurable quantities and do not depend on any particle physics.
    [Show full text]
  • Relativistic Kinematics of Particle Interactions Introduction
    le kin rel.tex Relativistic Kinematics of Particle Interactions byW von Schlipp e, March2002 1. Notation; 4-vectors, covariant and contravariant comp onents, metric tensor, invariants. 2. Lorentz transformation; frequently used reference frames: Lab frame, centre-of-mass frame; Minkowski metric, rapidity. 3. Two-b o dy decays. 4. Three-b o dy decays. 5. Particle collisions. 6. Elastic collisions. 7. Inelastic collisions: quasi-elastic collisions, particle creation. 8. Deep inelastic scattering. 9. Phase space integrals. Intro duction These notes are intended to provide a summary of the essentials of relativistic kinematics of particle reactions. A basic familiarity with the sp ecial theory of relativity is assumed. Most derivations are omitted: it is assumed that the interested reader will b e able to verify the results, which usually requires no more than elementary algebra. Only the phase space calculations are done in some detail since we recognise that they are frequently a bit of a struggle. For a deep er study of this sub ject the reader should consult the monograph on particle kinematics byByckling and Ka jantie. Section 1 sets the scene with an intro duction of the notation used here. Although other notations and conventions are used elsewhere, I present only one version which I b elieveto b e the one most frequently encountered in the literature on particle physics, notably in such widely used textb o oks as Relativistic Quantum Mechanics by Bjorken and Drell and in the b o oks listed in the bibliography. This is followed in section 2 by a brief discussion of the Lorentz transformation.
    [Show full text]
  • Ground State of Protonium
    Spectrum of coincident pairs of X-rays from proton-antiproton atoms. Selecting a transi­ tion to the first atomic excited state (L line) enables the first ground state transition (K- alpha line) to be unravelled from the other K lines. beams, and can help the experi­ ments wanting decelerated parti­ cles. The electron gun from the ICE ring was converted for LEAR. The cooling had to be achieved along a shorter interaction length, a 1.5 m straight where the electron beam overlaps with the orbiting particles, compared to 3 m in ICE, and the problem of firing an intense elec­ tron beam into the very high vacu­ um of LEAR (2.5 A into 10"11 torr) had to be confronted. Special diag­ nostics had to be developed, in­ cluding scattering of laser light on the electron beam, observing the microwave radiation from the spi­ ralling of the electrons in the mag­ netic field, and observation of the X-rays caused by stray electrons. In the October tests cooling was observed from the very first injec­ tion of a proton beam into LEAR using Schottky scans and the de­ tection of neutral hydrogen. This latter technique can only be applied while working on proton beams - neutral hydrogen atoms emerge periments. The cooling of a the system used for these experi­ from the straight section unde- bunched beam was demonstrated ments into a reliable system for viated by the magnetic fields of the and very short bunches were regular operation of LEAR, how­ ring or of the electron cooling sys­ achieved.
    [Show full text]
  • Compact Dark Matter Objects Via $ N $ Dark Sectors
    Compact Dark Matter Objects via N Dark Sectors Gia Dvali,1, 2 Emmanouil Koutsangelas,1, 2, ∗ and Florian K¨uhnel3 1 Arnold Sommerfeld Center, Ludwig-Maximilians-Universit¨at,Theresienstraße 37, 80333 M¨unchen,Germany, 2 Max-Planck-Institut f¨urPhysik, F¨ohringerRing 6, 80805 M¨unchen,Germany 3 The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden (Dated: Monday 27th April, 2020, 12:34am) We propose a novel class of compact dark matter objects in theories where the dark matter consists of multiple sectors. We call these objects N-MACHOs. In such theories neither the existence of dark matter species nor their extremely weak coupling to the observable sector represent additional hypotheses but instead are imposed by the solution to the Hierarchy Problem and unitarity. The crucial point is that particles from the same sector have non-trivial interactions but interact only gravitationally otherwise. As a consequence, the pressure that counteracts the gravitational collapse is reduced while the gravitational force remains the same. This results in collapsed structures much lighter and smaller as compared to the ordinary single-sector case. We apply this phenomenon to a dark matter theory that consists of N dilute copies of the Standard Model. The solutions do not rely on an exotic stabilization mechanism, but rather use the same well-understood properties as known stellar structures. This framework also gives rise to new microscopic superheavy structures, for example with mass 108 g and size 10−13 cm. By confronting the resulting objects with observational constraints, we find that, due to a huge suppression factor entering the mass spectrum, these objects evade the strongest constrained region of the parameter space.
    [Show full text]
  • Neutrino Masses and Oscillations in Theories Beyond the Standard Model
    HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-2018-02 Neutrino masses and oscillations in theories beyond the Standard Model By TIMO J. KÄRKKÄINEN Helsinki Institute of Physics and Department of Physics Faculty of Science UNIVERSITY OF HELSINKI FINLAND An academic dissertation for the the degree of DOCTOR OF PHILOSOPHY to be presented with the permission of the Fac- ulty of Science of University of Helsinki, for public criticism in the lecture hall E204 of Physicum (Gustaf Hällströmin katu 2, Helsinki) on Friday, 19th of October, 2018 at 12 o’clock. HELSINKI 2018 This thesis is typeset in LATEX, using memoir class. HIP internal report series HIP-2018-02 ISBN (paper) 978-951-51-1275-0 ISBN (pdf) 978-951-51-1276-7 ISSN 1455-0563 © Timo Kärkkäinen, 2018 Printed in Finland by Unigrafia. TABLE OF CONTENTS Page 1 Introduction 1 1.1 History ................................... 1 1.1.1 History of non-oscillation neutrino physics . ...... 1 1.1.2 History of neutrino oscillations ................ 3 1.1.3 History of speculative neutrino physics ........... 5 1.2 Standard Model . ........................... 6 1.2.1 Gauge sector . .......................... 8 1.2.2 Kinetic sector . .......................... 9 1.2.3 Brout-Englert-Higgs mechanism ............... 10 1.2.4 Yukawa sector . .......................... 12 1.3 Some problems in the Standard Model ................ 13 1.3.1 Flavour problem ......................... 13 1.3.2 Neutrino masses ......................... 13 1.3.3 Hierarchy problem ........................ 14 1.3.4 Cosmological issues ....................... 14 1.3.5 Strong CP problem ........................ 15 2 Phenomenology of massive light neutrinos 16 2.1 Dirac mass term . ........................... 17 2.2 Weak lepton current ..........................
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title PROTON-AMTIPROTON ANNIHILATION IN PROTONIUM Permalink https://escholarship.org/uc/item/7br7d1gt Author Desai, Bipin R. Publication Date 1960-01-05 eScholarship.org Powered by the California Digital Library University of California UCRL —9°J4 Cy .2 UNIVERSITY OF CALIFORNIA ernest:' oj:auirence Ddü2vion TWO-WEEK LOAN COPY This is a library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545 4 BERKELEY, CALIFORNIA DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. - 2 I. 41LL , UCRL-9014 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No. W-7405-eng-48 PROTON-ANTIPROTON ANNIHILATION IN PROTONIUM Bipin R.
    [Show full text]