Optimising harvest date through use of an integrated grape compositional and sensory model Katja ŠUKLJE, Guillaume ANTALICK, Campbell MEEKS, John W. BLACKMAN, Alain DELOIRE & Leigh M. SCHMIDTKE

National Wine and Grape Industry Centre (NWGIC) Charles Sturt University (CSU)

Yarra Valley– February 2015 Is aromatic and mouthfeel maturity linked to the technological maturity?

• Is the concept of extended hang time necessary to reach optimal ripeness?

• Sugar concentration and flavour nexus?

• Volatile and non-volatile nexus? Goals (what to achieve)

• To study grape aromatic evolution during the ripening using sequential harvest

• To characterise grape composition (volatile and non-volatile) in relation to corresponding wines using sequential harvest

• Linking grape and wine composition to wine sensory attributes

• To study the role of main abiotic drivers (temperature and water) on grape/wine composition From the to the wine and sensory: how to capture the complexity?

An integrated approach across the value chain When to harvest?

 Traditional indicators: Baume, TA, pH, colour, grape berry sensory evaluation = perception of the wine in the mouth (non volatile matrix).

 New indicators related to possible wine aromatic profiles (volatile matrix). Experimental design Location

Griffith Geographical position: 34”17’00 South; 146”02”00 East Altitude: 134 m

Riverina Wagga Wagga

Temperature: Huglin index > 3000 Warm to Hot climate

(Tonietto & Carbonneau, 2004; Huglin, 1978) Experimental

Shiraz A Shiraz B

Blue: low vigour Red: high vigour

Smoothed EVI images of Shiraz A and Shiraz B taken on 5 February 2014. Size of a pixel represents 50 cm in nature. Experimental vineyards

Vineyard A Vineyard B Primary shoots 73 89 Prunning mass 1476 g/vine 1006 g/vine Clone Minato 1654 Average yield 8 t/ha 12 t/ha Mechanical pruning – Drip irrigation Sprawling training system Time Climatic scales Decade

Macroclimate Year Season

Month Meso-climate Topoclimate Day

Hour

Minute Microclimate Nanoclimate Surface

Bunch Plot District Province Berry Row Ward Region Climatic data

1. Mesoclimate (vineyard) Weather stations in each experimental vineyard, measuring:

- Average temperature - Relative humidity - Rainfall - Solar radiation - Wind speed and direction Average hourly temperatures for vineyard B for different stages of berry development

When and how temperature affects berry ripening? Frequency of days when temperature exceeded 35 °C for Shiraz B

43

42

41

40

C

°

39

38 Temperature 37

36

35 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 3 5 7 9 11 13 15 17 19 December January February Date

Calculated from mesoclimatic data collected inside the vineyard. Huglin index

a 6-month heat summation [((daily mean T–10°C.) + (daily max T –10°C. ))/2] (1 October to 31 March: to be adapted to the phenology, from bud burst to harvest)

relating heliothermic conditions of a region to its potential to ripen various cultivars

Huglin index Viticultural climate description ≤1500 Very cool >1500≤1800 Cool >1800≤2100 Temperate >2100≤2400 Temperate warm >2400≤3000 Warm >3000 Very warm

(Tonietto & Carbonneau, 2004; Huglin, 1978) Cultivars adaptation to the HI

1500: Muller - Thurgau, Portugais bleu,...

1600: Pinot B, Pinot G, Aligoté, Gewurztraminer,…

1700: Pinot N, , Sylvaner,

1800: Cabernet - Franc, ,...

1900: Cabernet - Sauvignon, Chenin, Sémillon, …

2000: , , Ugni - B, …

2100: Cinsault, Mourvèdre,...

2200: , Pinotage ?,…

2300: …. Huglin, 1978 Frequency of vintages according to Huglin index classified as very warm (HI>3000) for Griffith

3250

3200

3150

3100 Huglin units Huglin 3050

3000

1961/1962 1967/1968 1973/1974 1979/1980 1985/1986 1991/1992 1949/1950 1951/1952 1953/1954 1955/1956 1957/1958 1959/1960 1963/1964 1965/1966 1969/1970 1971/1972 1975/1976 1977/1978 1981/1982 1983/1984 1987/1988 1989/1990 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 Vintages

Climatic data used are SILO drilled climatic data (Department of Science, Information Technology and the Arts, Queensland State Government, Australia). Locations: Yarra Valley Frequency of vintages according to Huglin index classified as temperate warm (HI>2100≤2400) for TarraWarra vineyards

2280 2260 2240

2220

units 2200

2180

Huglin 2160 2140

2120

2100

1949/1950 1963/1964 1977/1978 1991/1992 2005/2006 1951/1952 1953/1954 1955/1956 1957/1958 1959/1960 1961/1962 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1979/1980 1981/1982 1983/1984 1985/1986 1987/1988 1989/1990 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2007/2008 2009/2010 2011/2012 2013/2014 Vintage

Climatic data used are SILO drilled climatic data (Department of Science, Information Technology and the Arts, Queensland State Government, Australia). Frequency of vintages according to Huglin index classified as temperate (HI>1800≤2100) for DeBortoli vineyards

2100

2050

2000

1950

Huglin units Huglin 1900

1850

1800

1951/1952 2003/2004 1949/1950 1953/1954 1955/1956 1957/1958 1959/1960 1961/1962 1963/1964 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1977/1978 1979/1980 1981/1982 1983/1984 1985/1986 1987/1988 1989/1990 1991/1992 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 Vintage

Climatic data used are SILO drilled climatic data (Department of Science, Information Technology and the Arts, Queensland State Government, Australia). Frequency of vintages according to Huglin index classified as temperate (HI>1800≤2100) for St. Andrews Vineyards

2100

2050

2000

1950

Huglin units Huglin 1900

1850

1800

1949/1950 1963/1964 1977/1978 1991/1992 2005/2006 1951/1952 1953/1954 1955/1956 1957/1958 1959/1960 1961/1962 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1979/1980 1981/1982 1983/1984 1985/1986 1987/1988 1989/1990 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2007/2008 2009/2010 2011/2012 2013/2014 Vintage

Climatic data used are SILO drilled climatic data (Department of Science, Information Technology and the Arts, Queensland State Government, Australia). Frequency of vintages according to Huglin index classified as cool (HI>1500≤1800) for Gambrook vineyards

1950 1900

1850

1800 1750 1700

1650 Huglin units Huglin 1600

1550

1500

1961/1962 2007/2008 2009/2010 1949/1950 1951/1952 1953/1954 1955/1956 1957/1958 1959/1960 1963/1964 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1977/1978 1979/1980 1981/1982 1983/1984 1985/1986 1987/1988 1989/1990 1991/1992 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2005/2006 2011/2012 2013/2014 Vintages

Climatic data used are SILO drilled climatic data (Department of Science, Information Technology and the Arts, Queensland State Government, Australia). Cold night index

is the average of the minimal temperature one month before harvest (it could be calculated 2 or 3 months before harvest as well).

Its interest is to help to charaterize the ripening of a cultivar in a particular environment.

The four climate classes according the the cold night index (°C.) are:

• Warm night: CI > 18

• Temperate night: CI > 14  18

• Cool night: CI 12  14

• Very cool night: CI  12 Day and night temperature and wine styles?

hot - warm warm

warm temperate - cool temperate cool 9273 developmentally modulated probsets.

All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Frequency of vintages with mean minimum February and March temperature above12°C for TarraWarra vineyards

Very cool to cool nights

16.5

16.0

C) °

( 15.5

15.0

14.5

Temperature Temperature 14.0 February 13.5 March

13.0 Mean Min Min Mean 12.5

12.0

1982 1982 1988 1994 1950 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1984 1986 1990 1992 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Year Frequency of vintages with mean minimum February and March temperature above12°C for DeBortoli vineyards

Very cool to cool nights

16.0

C) 15.5

° ( 15.0 14.5

14.0 Temperature Temperature 13.5 February 13.0 March

12.5 Mean Min Min Mean

12.0

1982 1982 1988 1994 1950 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1984 1986 1990 1992 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Vintage Frequency of vintages with mean minimum February and March temperature above12°C for St. Andrews vineyards

Very cool to cool nights

16.0 C) ° 15.5 15.0 14.5 14.0 13.5 February 13.0 March

12.5 Mean Min Temperature ( Temperature Min Mean

12.0

1982 1982 1988 1994 1950 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1984 1986 1990 1992 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Year Frequency of vintages with mean minimum February and March temperature above12°C for Gambrook vineyards

Very cool to cool nights

15.5 C) ° 15.0

14.5

14.0

13.5 February 13.0 March

12.5 Mean Min Temperature ( Temperature Min Mean

12.0

1982 1982 1988 1994 1950 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1984 1986 1990 1992 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Year Frequency of days in a vintage with max temperature 30°C or above for TarraWarra vineyards

60

55

50

45

40

35

Number of days of Number 30

25

20

1961 1979 1949 1951 1953 1955 1957 1959 1963 1965 1967 1969 1971 1973 1975 1977 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 Year Frequency of days in a vintage with max temperature 30°C or above for DeBortoli vineyards

50

45

40

35

30 Number of days of Number 25

20

1953 1997 1949 1951 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1999 2001 2003 2005 2007 2009 2011 2013 Year Frequency of days in a vintage with max temperature 30°C or above for St. Andrews vineyards

50

45

40

35

30 Number of days days of Number

25

20

1983 1949 1951 1953 1955 1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 Year Frequency of days in a vintage with max temperature 30°C or above for Gambrook vineyards

34

32

30

28

26

Number of days of Number 24

22

20

1984 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Year Vine water status Soil moisture

When and how vine water status affects berry ripening? Stem water potential measurements

Vineyard A Vineyard B Shiraz sequential harvest proposed model Accumulation of sugar per berry

Window to harvest for jammy fruit Window to Window to harvest harvest for mature fruit for fresh fruit

days Beginning of veraison 0 12 17 24 30 35 (berry softening) Day 0 = when sugar per berry reaches a plateau, typically 20-22 °Brix Sugar loading curve for Shiraz A

350 140

300 120

250 100

mg/berry) 200 80 10.2.2014 17.1.2014 28.1.2014 26.8 Brix sugar loading 150 21.7 Brix 60

22.0 Brix Berry fresh mass per berry ( perberry

100 40

100 berries fresh mass (g) mass fresh berries 100 Sugar Sugar 50 20

0 0 683 771 847 989 1157 1321 1414

GDD from flowering onwards Sugar loading curve for Shiraz B

300 120

250 100

200 80

mg/berry) ( 150 17.1.2014 28.1.2014 10.2.2014 60 21.6 Brix 23.1 Brix 27.2 Brix

100 20.2.2014 40 25.3 Brix

50 20 (g) mass berries 100 Sugar perberry Sugar

0 0 767 871 952 1107 1165 1287 1462 1566 1712

GDD from flowering onwards Basic parameters of maturity

Vineyard A Vineyard B

Fresh Fruit Mature Fruit Fresh Fruit Mature Fruit Jammy Fruit Harvest 1 Harvest 2 Harvest 1 Harvest 2 Harvest 3 Date 28.1.2014 10.2.2014 28.1.2014 10.2.2014 20.2.2014 Baume 12.5 14.9 13.1 15.1 14.1 TA (g/L) 5.36 3.3 6.1 3.4 3.1 pH 3.70 4.36 3.52 4.10 4.04

Commercial harvest dates coincided with mature fruit harvest stage Anthocyanins in grape berry

Vineyard A FF stage

350 0.40M F stage

300 0.35

0.30

250 Sugar/berry berrytissue)

0.25 delphinidin-3-O-glucoside 200 cyanidin-3-O-glucoside 0.20 petunidin-3-O-glucoside

150 of (mg/g

0.15 peonidin-3-O-glucoside malvidin-3-O-glucoside 100

Sugar loading (mg/berry)loading Sugar 0.10 malvidin-3-O-acetylglucoside malvidin-3-(6-O-cumaryl) glucoside 50 0.05 Anthocyanins

0 0.00 683 771 847 989 1157 1321 1414 GDD from flowering onwards

Anthocyanins are expressed as an equivalent of malvidin-3 glucoside. Anthocyanins in grape berry

Vineyard B FF stage MF stage 300 0.40 JF stage

0.35

250

0.30 Sugar/berry 200 0.25 delphinidin-3-O-glucoside of berrytissue of cyanidin-3-O-glucoside 150 0.20

petunidin-3-O-glucoside

mg/g mg/g

0.15 peonidin-3-O-glucoside 100 malvidin-3-O-glucoside

Sugar loading (mg/berry)loading Sugar 0.10 malvidin-3-O-acetylglucoside 50 0.05 Anthocyanins malvidin-3-(6-O-cumaryl) glucoside

0 0.00 767 871 952 1107 1165 1287 1462 1566 1712 GDD from flowering onwards Wine colour

14 a a 12 b

10

8 Vineyard B 6 Vineyard A 4

Colour density Colour 2 0 FF MF JF Harvest stage

0.70 a A b 0.60 c B 0.50

0.40 Vineyard B Hue 0.30 Vineyard A 0.20 0.10 0.00 FF MF JF Harvest stage Wine colour

700

600 (mg/L) 500 400 300 Vineyard B Vineyard A nthocyanins 200 100 Total a Total 0 FF MF JF Harvest stage Wine tannins

2.0 a 1.8

1.6 ab 1.4 b 1.2

1.0

tannins (g/L) tannins

P Vineyard B

C 0.8

M Vineyard A 0.6 0.4 0.2 0.0 FF MF JF Harvest stage

MCP tannins are expressed as an epicatehin equivalent. Wine sensory evaluation

Fullness / Roundness

Spicy/Peppery Dark Fruit Griffith A FF Griffith A MF Griffith B FF Griffith B MF Griffith B PMFJF Green / Herbaceous Stewed Fruit

Red Fruit 1 Pre-fermentative parameters 2 Berry Terpenes and Norisoprenoids 3 Berry Amino Acids 4 Wine Volatiles 5 Wine Sensory Evaluation Correlating grape and wine chemical with wine sensory composition

Vineyard B

Vineyard B-Jammy Fruit Mature Fruit Fresh Fruit

Vineyard A Loadings Pre-fermentative parameters

α-terpinene γ-terpinene Go Ferm Other α-ionone Fermaid Baume, pH, terpenes DAP TA addition and C13

YAN, NOPA, Vineyard B-Jammy Fruit TA ammonia β-ionone β-damascenone

γ-nonalacton Stewed fruit Glutamine Phenylethyl acetate Spicy GABA Ethyl isobutyrate Fulness Proline Isobutanol Isoamyl acetate Valine Dimethyl sulfide Phenylalanine Dark fruit

Propyl acetate Threonine Aspargine Trans-2hexenol Hexanol Red fruit Arginine Alanine cis-3-hexenol Ethyl dodecanoate Herbaceous Cis-3-hexenyl acetate Wrap up

• For Shiraz there is a clear aromatic difference in the wines from grapes harvested sequentially (fresh fruit and mature fruit)

• Harvest date was the major driver of wine style, irrespective of vineyard site and management, clone ….

• Grape and wine chemical composition did change according to the harvest date

• Commercial harvest dates from the wineries coincided with mature stage

• More to come about the possible role of abiotic factors (temperature and water)

National Wine and Grape Industry Centre http://www.csu.edu.au/nwgic [email protected]

Dr Guillaume ANTALICK

Campbell MEEKS

Dr John BLACKMAN

Prof Alain DELOIRE

Dr Leigh SCHMIDTKE

Dr Katja ŠUKLJE Thank you

This project is funded by AGWA (Australian Grape and Wine Authority) through their investment body, the Grape and Wine Research and Development Corporation, with matching funding from the Australian federal Government .

The National Wine and Grape Industry Centre is a research centre within Charles Sturt University in alliance with the Department of Primary Industries NSW and the NSW Wine Industry Association