Optimising Harvest Date Through Use of an Integrated Grape Compositional and Sensory Model Katja ŠUKLJE, Guillaume ANTALICK, Campbell MEEKS, John W

Total Page:16

File Type:pdf, Size:1020Kb

Optimising Harvest Date Through Use of an Integrated Grape Compositional and Sensory Model Katja ŠUKLJE, Guillaume ANTALICK, Campbell MEEKS, John W Optimising harvest date through use of an integrated grape compositional and sensory model Katja ŠUKLJE, Guillaume ANTALICK, Campbell MEEKS, John W. BLACKMAN, Alain DELOIRE & Leigh M. SCHMIDTKE National Wine and Grape Industry Centre (NWGIC) Charles Sturt University (CSU) Yarra Valley– February 2015 Is aromatic and mouthfeel maturity linked to the technological maturity? • Is the concept of extended hang time necessary to reach optimal ripeness? • Sugar concentration and flavour nexus? • Volatile and non-volatile nexus? Goals (what to achieve) • To study grape aromatic evolution during the ripening using sequential harvest • To characterise grape composition (volatile and non-volatile) in relation to corresponding wines using sequential harvest • Linking grape and wine composition to wine sensory attributes • To study the role of main abiotic drivers (temperature and water) on grape/wine composition From the vineyard to the wine and sensory: how to capture the complexity? An integrated approach across the value chain When to harvest? Traditional indicators: Baume, TA, pH, colour, grape berry sensory evaluation = perception of the wine in the mouth (non volatile matrix). New indicators related to possible wine aromatic profiles (volatile matrix). Experimental design Location Griffith Geographical position: 34”17’00 South; 146”02”00 East Altitude: 134 m Riverina Wagga Wagga Temperature: Huglin index > 3000 Warm to Hot climate (Tonietto & Carbonneau, 2004; Huglin, 1978) Experimental vineyards Shiraz A Shiraz B Blue: low vigour Red: high vigour Smoothed EVI images of Shiraz A and Shiraz B taken on 5 February 2014. Size of a pixel represents 50 cm in nature. Experimental vineyards Vineyard A Vineyard B Primary shoots 73 89 Prunning mass 1476 g/vine 1006 g/vine Clone Minato 1654 Average yield 8 t/ha 12 t/ha Mechanical pruning – Drip irrigation Sprawling training system Time Climatic scales Decade Macroclimate Year Season Month Meso-climate Topoclimate Day Hour Minute Microclimate Nanoclimate Surface Bunch Plot District Province Berry Row Ward Region Climatic data 1. Mesoclimate (vineyard) Weather stations in each experimental vineyard, measuring: - Average temperature - Relative humidity - Rainfall - Solar radiation - Wind speed and direction Average hourly temperatures for vineyard B for different stages of berry development When and how temperature affects berry ripening? Frequency of days when temperature exceeded 35 °C for Shiraz B 43 42 41 40 C ° 39 38 Temperature 37 36 35 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 3 5 7 9 11 13 15 17 19 December January February Date Calculated from mesoclimatic data collected inside the vineyard. Huglin index a 6-month heat summation [((daily mean T–10°C.) + (daily max T –10°C. ))/2] (1 October to 31 March: to be adapted to the phenology, from bud burst to harvest) relating heliothermic conditions of a region to its potential to ripen various cultivars Huglin index Viticultural climate description ≤1500 Very cool >1500≤1800 Cool >1800≤2100 Temperate >2100≤2400 Temperate warm >2400≤3000 Warm >3000 Very warm (Tonietto & Carbonneau, 2004; Huglin, 1978) Cultivars adaptation to the HI 1500: Muller - Thurgau, Portugais bleu,... 1600: Pinot B, Pinot G, Aligoté, Gewurztraminer,… 1700: Pinot N, Riesling, Sylvaner, Gamay 1800: Cabernet - Franc, Merlot,... 1900: Cabernet - Sauvignon, Chenin, Sémillon, … 2000: Grenache, Syrah, Ugni - B, … 2100: Cinsault, Mourvèdre,... 2200: Carignan, Pinotage ?,… 2300: …. Huglin, 1978 and the Arts, Queensland State Government, Australia). Australia). Government, Queensland and the Arts, State Technology of (Department Science, Information data drilled climatic SILO used are data Climatic Huglin units 3000 3050 3100 3150 3200 3250 1949/1950 1951/1952 Frequency of vintages according to according vintages of Frequency 1953/1954 1955/1956 1957/1958 1959/1960 1961/1962 1963/1964 Griffith for (HI>3000) warm very as 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1977/1978 Vintages 1979/1980 1981/1982 1983/1984 1985/1986 Huglin 1987/1988 1989/1990 1991/1992 classifiedindex 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 Locations: Yarra Valley and the Arts, Queensland State Government, Australia). Australia). Government, Queensland and the Arts, State Technology of (Department Science, Information data drilled climatic SILO used are data Climatic Huglin units 2100 2120 2140 2160 2180 2200 2220 2240 2260 2280 1949/1950 1951/1952 for (HI>2100≤2400) warm temperate as Frequency of vintages according to according vintages of Frequency 1953/1954 1955/1956 1957/1958 1959/1960 1961/1962 1963/1964 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1977/1978 Vintage 1979/1980 1981/1982 1983/1984 1985/1986 Huglin 1987/1988 TarraWarra 1989/1990 1991/1992 classifiedindex 1993/1994 1995/1996 1997/1998 vineyards 1999/2000 2001/2002 2003/2004 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 and the Arts, Queensland State Government, Australia). Australia). Government, Queensland and the Arts, State Technology of (Department Science, Information data drilled climatic SILO used are data Climatic Huglin units 1800 1850 1900 1950 2000 2050 2100 1949/1950 1951/1952 to according vintages of Frequency 1953/1954 for (HI>1800≤2100) temperate as 1955/1956 1957/1958 1959/1960 1961/1962 1963/1964 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 Vintage 1977/1978 1979/1980 1981/1982 1983/1984 Huglin 1985/1986 DeBortoli 1987/1988 1989/1990 1991/1992 classifiedindex 1993/1994 1995/1996 vineyards 1997/1998 1999/2000 2001/2002 2003/2004 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 and the Arts, Queensland State Government, Australia). Australia). Government, Queensland and the Arts, State Technology of (Department Science, Information data drilled climatic SILO used are data Climatic Huglin units 1800 1850 1900 1950 2000 2050 2100 1949/1950 1951/1952 Frequency of vintages according to according vintages of Frequency 1953/1954 Vineyards Andrews St. for (HI>1800≤2100) temperate as 1955/1956 1957/1958 1959/1960 1961/1962 1963/1964 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1977/1978 Vintage 1979/1980 1981/1982 1983/1984 1985/1986 Huglin 1987/1988 1989/1990 1991/1992 classifiedindex 1993/1994 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 and the Arts, Queensland State Government, Australia). Australia). Government, and Queensland the Arts, State Technology of (Department Science, Information data drilled climatic SILO used are data Climatic Huglin units 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 1949/1950 Frequency of vintages according to according vintages of Frequency 1951/1952 1953/1954 as cool (HI>1500≤1800) for (HI>1500≤1800)cool as 1955/1956 1957/1958 1959/1960 1961/1962 1963/1964 1965/1966 1967/1968 1969/1970 1971/1972 1973/1974 1975/1976 1977/1978 Vintages 1979/1980 1981/1982 Gambrook 1983/1984 1985/1986 Huglin 1987/1988 1989/1990 1991/1992 index classifiedindex 1993/1994 vineyards 1995/1996 1997/1998 1999/2000 2001/2002 2003/2004 2005/2006 2007/2008 2009/2010 2011/2012 2013/2014 Cold night index is the average of the minimal temperature one month before harvest (it could be calculated 2 or 3 months before harvest as well). Its interest is to help to charaterize the ripening of a cultivar in a particular environment. The four climate classes according the the cold night index (°C.) are: • Warm night: CI > 18 • Temperate night: CI > 14 18 • Cool night: CI 12 14 • Very cool night: CI 12 Day and night temperature and wine styles? hot - warm warm warm temperate - cool temperate cool 9273 developmentally modulated probsets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Mean Min Temperature (°C) 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 Very cool to cool nights nights cool to cool Very 1950 March and February minimum with mean vintages of Frequency 1952 1954 1956 1958 above1 temperature 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 2 ° C for C for Year 1980 1982 1984 1986 TarraWarra 1988 1990 1992 1994 1996 1998 vineyards 2000 2002 2004 2006 2008 2010 2012 2014 March February Mean Min Temperature (°C) 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 Very cool to cool nights nights cool to cool Very 1950 March and February minimum with mean vintages of Frequency 1952 1954 1956 1958 temperature above1 temperature 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 2 Vintage 1980 ° C for C for 1982 1984 1986 DeBortoli 1988 1990 1992 1994 1996 vineyards 1998 2000 2002 2004 2006 2008 2010 2012 2014 March February Mean Min Temperature (°C) 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 Very cool to cool nights nights cool to cool Very 1950 March and February minimum with mean vintages of Frequency 1952 1954 1956 1958 above1 temperature 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 2 ° C for St. Andrews vineyards Andrews St. C for Year 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 March February Mean Min Temperature (°C) 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 Very cool to cool nights nights cool to cool Very 1950 March and February minimum with mean vintages of Frequency 1952 1954 1956 1958 above1 temperature 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 2 ° Year 1980 C for 1982 1984 1986 Gambrook 1988 1990 1992 1994 1996 vineyards 1998 2000 2002 2004 2006 2008 2010 2012 2014 March February
Recommended publications
  • Changes in European Winegrape Phenology and Relationships with Climate
    CHANGES IN EUROPEAN WINEGRAPE PHENOLOGY AND RELATIONSHIPS WITH CLIMATE LES CHANGEMENTS DANS WINEGRAPE PHENOLOGY EUROPEEN ET LES RELATIONS AVEC LE CLIMAT G. V. JONES1, E. DUCHENE2, D. TOMASI3, J. YUSTE4, O. BRASLAVSKA5, H. SCHULTZ6, C. MARTINEZ7, S. BOSO7, F. LANGELLIER8, C. PERRUCHOT9, AND G. GUIMBERTEAU10 1Department of Geography, Southern OregonUniversity, Ashland, Oregon 97520, USA Email: [email protected] 2 Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, INRA-ULP, France 3 Istituto Sperimentale per La Viticultura, Conegliano, Italy 4Servicio de Investigación y Tecnología Agraria de Castilla y León, Valladolid, Spain 5Slovak Hydrometeorological Institute, Banska Bystrica, Slovak Republic 6Department of Viticulture, The Geisenheim Research Institute, Geisenheim, Germany 7Misión Biológica de Galicia CSIC, Pontevedra, Spain 8Comité Interprofessionnel du Vin de Champagne, Reims, France 9Domaine Louis Latour, Aloxe Corton, Côte d'OR, France 10Univerisity of Bordeaux II (retired), Bordeaux, France Abstract: This research presents a summary of the observed winegrape phenological characteristics and trends across many regions and varieties in France, Italy, Spain, Germany, and Slovakia. In addition, the research examines concomitant climatic changes that have influenced the phenological timing. The results reveal significantly earlier events (6-18 days) with shorter intervals between events (4-14 days) across most regions. In addition, warming trends in most regions are evident and have clearly influenced these changes in the phenological cycle of winegrapes in Europe. Changes are typically greater in minimum temperatures than maximum temperatures, with an average warming of 1.7°C during the growing season and increases of nearly 300 growing degree-days or Huglin index values over the last 50 years.
    [Show full text]
  • Washington Wine 101 Washington Avas
    WASHINGTON WINE 101 WASHINGTON AVAS 16 UNIQUE GROWING REGIONS Total Wine Grape Area: Acres: 60,000+ / Hectares: 24,281+ WASHINGTON AVAs COLUMBIA VALLEY Encompassing more than a quarter of the state, the Columbia Valley is by far Washington’s largest growing region at nearly 11 million acres. Almost all of Washington’s other growing regions are sub- appellations of the Columbia Valley. DESIGNATED: 1984 VINEYARDS: Total vineyard acreage: 59,234 (23,971 hectares) Washington acreage: 60,079 (24,313 hectares) TOP VARIETIES: Cabernet Sauvignon, Chardonnay, Merlot, Riesling, Syrah ANNUAL PRECIPITATION: Average 6-8 inches, wide range throughout GRAPES PRODUCED: 60% 40% RAIN SHADOW EFFECT W A W I N E The Columbia Valley is protected from wet weather systems by two major mountain ranges, the Olympics and the Cascades, creating the perfect climate for wine in the warm and dry eastern part of the state. Source: Sagemoor Vineyard WASHINGTON AVAs YAKIMA VALLEY Washington State’s first federally-recognized AVA, Yakima Valley has more than one quarter of Washington’s total planted acreage. Yakima Valley is one of Washington’s most diverse growing regions. DESIGNATED: 1983 VINEYARDS: 18,924 acres (7,658 hectares) TOP VARIETIES: Chardonnay, Merlot, Cabernet Sauvignon, Riesling, Syrah ANNUAL PRECIPITATION: Average 8 inches GRAPES PRODUCED: 60% 40% Red Willow Vineyard WASHINGTON AVAs WALLA WALLA VALLEY The Walla Walla Valley is home to some of Washington’s oldest wineries and has the highest concentration of wineries in the state. It is a shared appellation with Oregon. VINEYARDS: Total vineyard acreage: 2,933 (1,186 hectares) Washington acreage: 1,672 (676 hectares) TOP VARIETIES: Cabernet Sauvignon, Merlot, Syrah ANNUAL PRECIPITATION: Range 7-22 inches GRAPES PRODUCED: 95% 5% Tertulia Estate WASHINGTON AVAs HORSE HEAVEN HILLS The Horse Heaven Hills is home to over one quarter of Washington’s planted acreage.
    [Show full text]
  • Plumpton Technical Report
    April 2020Page | 1 Page | 2 LIFE-ADVICLIM PROJECT: PLUMPTON PILOT SITE COORDINATORS Chris Foss1 3 Hervé Quénol AUTHORS 1 3 3 Chris Foss1, Theo Petitjean2, Corentin Cortiula , Cyril Tissot , Renan Le Roux , Emilie 4 4 5 6 Adoir , Sophie Penavayre , Liviu Irimia , Marco Hofmann , 1 Wine Division, Plumpton College, Ditchling Road, Nr Lewes, East Sussex BN7 3AE, (UK) 2 EGFV, Bordeaux Science Agro, INRA, Univ. Bordeaux, ISVV, F-33883 Villenave d'Ornon (France) 3 UMR6554 LETG, CNRS (France) 4 Institut Français de la Vigne et du Vin, Pôle Bourgogne Beaujolais Jura Savoie, SICAREX Beaujolais – 210 Boulevard Vermorel – CS 60320 – 69661 Villefranche s/Saône cedex (France) 5 University of Agricultural Sciences and Veterinary Medicine, Iași, (Romania) 6 Hochschule Geisenheim University UGM, Geisenheim, 65366, (Germany) http://www.adviclim.eu/Copyright © LIFE ADVICLIM WiththecontributionoftheLIFEfinancialinstrumentoftheEuropeanUnion Under the contract number: LIFE13ENVFR/001512 Page | 3 Table of contents FOREWORD.............................................................................................................. 5 INTRODUCTION ....................................................................................................... 6 PART 1: From observation to modelisation at the vineyard scale: an improvement in terroir analysis ..................................................................................................... 8 1.1 Agro-climatic measurements implemented at the vineyard scale ...................... 9 1.2 Temperature analysis
    [Show full text]
  • Weinbau Und Klimawandel
    Klimawandel und Landwirtschaft Hochschultag der JLU Gießen 2018 Weinbau und Klimawandel Otmar Löhnertz Hochschule Geisenheim Otmar Löhnertz: Klimawandel im Weinbau 10.12.2018 1 01. Oktober 2012 Seit 1988 gibt es nur noch gute Weinjahre Das letzte richtig schlechte Weinjahr war 1987. Die Mostgewichte lagen beim Riesling bei der Lese zwischen 53 und 65 Grad Oechsle. Otmar Löhnertz: Klimawandel im Weinbau 10.12.2018 2 Am Beispiel des Extremjahres 1984 sollen die Zusammenhänge einer optimierten Lese zur Sektgrundweinbereitung dargestellt werden. Lesedatum Mostgewicht Gesamtsäure pH - Wert 24.10. 53 17.4 2.8 14.11. 58 13.6 2.9 Riesling 1984 ( Mosel - Saar - Ruwer ) Otmar Löhnertz: Klimawandel im Weinbau RHEIN NOVEMBER 2018 Otmar Löhnertz: Klimawandel im Weinbau 10.12.2018 4 RHEIN NOVEMBER 2011 RHEIN NOVEMBER 2011 44/2014 44/2014 • Dem Grenache wird es zu warm in Châteauneuf? • Warum dann nicht Syrah pflanzen, die Rebe, die als Shiraz in aller Welt Karriere gemacht hat? • Was spricht gegen spät reifenden Cabernet Sauvignon weiter nördlich im Rhône-Tal? Oder sogar im Burgund? • Warum nicht mit den Weinstöcken die Hügel hinauf in kühlere Höhen umziehen? Oder die Nordflanken der Berge bepflanzen, um die Sonne zu meiden? • In Südtirol steht Riesling inzwischen auf > 1000 m N.N. 44/2014 • Im gesamten Süden Frankreichs ist der Jahreskalender der Winzer durcheinander. Die Reifeperioden verkürzen sich laufend, die Zeit der Ernten kommt immer früher. 44/2014 • Das neue Klima wird zu riechen und zu schmecken sein, wenn Feste gefeiert und Flaschen entkorkt werden. Wenn weißen Burgundern die Klasse fehlt. Wenn der duftige Sancerre von der Loire breit wird und plump.
    [Show full text]
  • Climate Change Adaptation in the Champagne Region
    CLIMATE CHANGE ADAPTATION IN THE CHAMPAGNE REGION PRESS PACK – JUNE 2019 Contents P. 3 THE CHALLENGE POSED BY CLIMATE CHANGE IN CHAMPAGNE P. 4 CHAMPAGNE’S CARBON FOOTPRINT P. 7 A PROGRAMME TO DEVELOP NEW GRAPE VARIETIES P. 10 VINE TRAINING P. 11 OENOLOGICAL PRACTICES P. 13 A REGION COMMITTED TO SUSTAINABLE DEVELOPMENT P. 14 SUSTAINABLE VITICULTURE CERTIFICATION IN CHAMPAGNE THE CHALLENGE POSED BY CLIMATE CHANGE IN CHAMPAGNE GLOBAL WARMING IS A FACT. THE GLOBAL AVERAGE TEMPERATURE HAS INCREASED BY 0.8°C SINCE PRE-INDUSTRIAL TIMES. THE IMPACT CAN ALREADY BE SEEN IN CHAMPAGNE. CLIMATE CHANGE A REALITY IN THE REGION Over the past 30 years, the three key uni- versal bioclimatic indexes used to monitor Water balance local winegrowing conditions have evolved slightly down as follows: Huglin index rose from 1,565 to 1,800 Cool nights index rose from 9.8°C to 10.4°C Compared with the 30-year baseline average (1961-1990), the temperature has risen by 1.1°C ON AVERAGE. Average rainfall is still 700mm/year. Damage caused by spring frosts has slightly increased despite a drop in the number of frosty nights due to earlier bud burst. The consequences are already visible and are indeed positive for the quality of the musts: Over the past 30 years: - 1,3 g H2SO4/l total acidity Earlier harvests starting 18 days earlier + 0,7 % vol natural alcoholic strength by volume These beneficial effects may well continue if global warming is limited to a 2°C rise. However, the Champagne Region is now exploring ideas that would enable the inherent characteristics of its wines to be preserved in less optimistic climate change scenarios.
    [Show full text]
  • VIEW of the Works Presented Within the “Viticulture Environment and Climate Change” Expert Group Since 2007
    RESOLUTION OIV-VITI 423-2012 REV1 OIV GUIDELINES FOR VITIVINICULTURE ZONING METHODOLOGIES ON A SOIL AND CLIMATE LEVEL THE GENERAL ASSEMBLY, On the proposal of Commission I “Viticulture”, IN VIEW OF the works presented within the “Viticulture Environment and Climate Change” expert group since 2007, CONSIDERING OIV Resolutions VITI/04/1998 and VITI/04/2006 that recommend that member countries continue studying viticulture zoning, CONSIDERING Resolution OIV-VITI 333-2010 on the definition of vitivinicultural “terroir”, CONSIDERING The economic, legislative and cultural consequences related to vitiviniculture zoning, CONSIDERING That there is increasing interest in partaking in zoning operations in most viticulture countries, CONSIDERING That there is a large spectrum of disciplines and tools used for carrying out zoning studies which are not classified according to their objectives (or purpose or usage) CONSIDERING The necessity to establish a methodology that would allow member countries to choose the most appropriate viticulture zoning method for their needs and goals, CONSIDERING that “terroir” has a spatial dimension, which implies a need for delimitation and zoning and that different aspects of terroir can be zoned, particularly physical environment aspects: soil and climate, CONSIDERING the importance, proposed by the CLIMA expert group and the Viticulture Commission of having a single resolution on vitiviniculture zoning, divided into four parts, (A, B, C, D) DECIDES to adopt the following resolution, concerning the “OIV Guidelines for vitiviniculture zoning methodologies on a soil and on a climate level” Certified in conformity Izmir, 22nd June 2012 The General Director of the OIV Secretary of the General Assembly Federico CASTELLUCCI © OIV 2012 1 Foreword The characteristics of a vitivinicultural product are largely the result of the influence of soil and climate on the behaviour of the vine.
    [Show full text]
  • Klimawandel Und Sortenwahl Der Huglin-Index Und Der Wärmeanspruch Von Rebsorten
    Bayerische Landesanstalt für Weinbau und Gartenbau Klimawandel und Sortenwahl Der Huglin-Index und der Wärmeanspruch von Rebsorten Veröffentlichung in „Das deutsche Weinmagazin“ 10/2011 Ulrike Maaß und Dr. Arnold Schwab Sachgebiet Weinbau- und Qualitätsmanagement Bayerische Landesanstalt für Weinbau und Gartenbau An der Steige 15, 97209 Veitshöchheim Tel. 0931/9801-562 oder -554 2 Im europäischen Raum ist der Huglin -Index ein beliebtes Maß zur Beurteilung der Anbaufähigkeit bestimmter Rebsorten in verschiedenen Weinbauregionen. Wärmesummenindizes charakterisieren die thermischen Bedingungen eines Standorts. Basierend auf der engen Beziehung zwischen Tagesmitteltemperatur und physiologischer Entwicklung der Rebe werden sogenannte Gradtage aus der Tagesmitteltemperatur abzüglich einer Basistemperatur über die Vegetationsperiode gebildet. Als Schwellenwert wird meist 10°C angesetzt. Der Zusammenhang von Tem peratursummen und der Physiologie der Rebe ist in D. Hoppmanns Buch „Terroir“ (2010) ausführlich dargestellt. Nach dem Index von P. Huglin (1978) werden alle Tagesmitteltemperaturen und Tagesmaxima abzüglich des Schwellenwerts von 10°C a b 1. April bis 30. September aufsummiert. Durch einen Korrekturfaktor wird die Breitengradlage und die damit die unterschiedliche Tageslänge eines untersuchten Gebietes berücksichtigt. Aus dem Wärmeanspruch verschiedener Rebsorten entwickelte P. Huglin eine Skala mit einer Untergrenze von 1500 Gradtagen, die die Grenze des empfohlenen Anbaus von Müller-Thurgau markiert. Mit steigendem Wert wird der Anbau
    [Show full text]
  • Classification of Serbian Winegrowing Regions Based on Climate-Viticulture
    Classication of Serbian winegrowing regions based on climate-viticulture indices Mirjana Ruml, Ana Vuković, Mirjam Vujadinović, Vladimir Djurdjević, Zorica Ranković-Vasić, Zoran Atanacković Faculty of Agriculture, University of Belgrade, Serbia ([email protected]) Institute for Meteorology, Faculty of Physics, University of Belgrade, Serbia South East European Virtual Climate Change Center, Belgrade, Serbia Abstract The aim of this work was to categorize wine region climates of Serbia using climate-viticulture suitability indices and compare The three viticultural climates, dened in the Geoviticulture MCC system, are present in Serbia (Figure 1 and Figure 2): the results to other winegrowing regions in Europe and worldwide. Meteorological observations for all available climatological HI–1 DI–1 CI+2 temperate, sub-humid with very cool nights, regions: Subotica-Horgoš, Srem and Nišava-South Morava; stations located in the traditional viticultural regions of Serbia with complete data for the period 1961–1990 were used to HI–1 DI–2 CI+2 temperate, humid with very cool nights, regions: Banat, Šumadija-Great Morava and West Morava; determine ve commonly used indices in viticulture zoning studies: growing season average temperature, the Winkler index, HI+1 DI–1 CI+2 temperate warm, sub-humid with very cool nights, Timok region. the heliothermal, dryness and cool night index as used in the Geoviticulture multicriteria climatic classication system. According to Tonietto and Carbonneau (2004), the theoretical characteristics of viticultural
    [Show full text]
  • Future Effects of Climate Change on the Suitability of Wine Grape Production Across Europe
    Regional Environmental Change (2019) 19:2299–2310 https://doi.org/10.1007/s10113-019-01502-x ORIGINAL ARTICLE Future effects of climate change on the suitability of wine grape production across Europe M. F. Cardell1 & A. Amengual1 & R. Romero1 Received: 29 November 2018 /Accepted: 20 April 2019 /Published online: 4 May 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Climate directly influences the suitability of wine grape production. Modified patterns of temperature and precipitation due to climate change will likely affect this relevant socio-economic sector across Europe. In this study, prospects on the future of bioclimatic indices linked to viticultural zoning are derived from observed and projected daily meteorological data. Specifically, daily series of precipitation and 2-m maximum and minimum temperatures from the E-OBS data-set have been used as the regional observed baseline. Regarding projections, a suite of regional climate models (RCMs) from the European CORDEX project have been used to create projections of these variables under the RCP4.5 and RCP8.5 future emission scenarios. A quantile-quantile adjustment is applied to the simulated regional scenarios to properly project the RCM data at local scale. Our results suggest that wine grape growing will be negatively affected in southern Europe. We expect a reduction in table quality vines and wine grape production in this region due to a future increase in the cumulative thermal stress and dryness during the growing season. Furthermore, the projected precipitation decrease, and higher rates of evapotranspiration due to a warmer climate will likely increase water requirements. On the other hand, high-quality areas for viticulture will significantly extend northward in western and central Europe.
    [Show full text]
  • Choosing Alternative Grapevine Varieties for the Padthaway, Mt Benson and Robe Regions of the Limestone Coast
    Choosing alternative grapevine varieties for the Padthaway, Mt Benson and Robe regions of the Limestone Coast Prepared by Libby Tassie Viticulturist Tassie Viticultural Consulting Date August 2016 Contents AIM ................................................................................................................................................................. 1 INTRODUCTION .............................................................................................................................................. 1 INVESTIGATION OF VARIETAL OPTIONS .......................................................................................................... 2 FACTORS TO CONSIDER WHEN CHOOSING ALTERNATIVE VARIETIES .............................................................. 4 1. CLIMATE AND CLIMATIC COMPARISONS .............................................................................................. 4 1.1. TEMPERATURE AND TEMPERATURE INDICES ..................................................................................................... 6 1.1.1. Mean January/July temperature (MJT) ........................................................................................... 6 1.1.2. Heat degree days (HDD) .................................................................................................................. 7 1.1.3. Other temperature indices ............................................................................................................. 7 1.2. OTHER CLIMATIC FACTORS ..........................................................................................................................
    [Show full text]
  • Climate Trends in a Specific Mediterranean Viticultural Area Between 1950 and 2006
    02-kelly 19/09/08 16:50 Page 113 CLIMATE TRENDS IN A SPECIFIC MEDITERRANEAN VITICULTURAL AREA BETWEEN 1950 AND 2006 F. LAGET1, J.-L. TONDUT1, A. DELOIRE2 and Mary T KELLY3 1: ACH, 84 avenue d'Assas, 34000 Montpellier, France 2: SupAgro, Department of « Plant sciences », 2 place Pierre Viala, 34060 Montpellier, France 3: Centre de formation et de la recherche en œnologie, UMR 1083 « Sciences pour l'œnologie et la viticulture », Faculté de pharmacie, Université Montpellier I, 15 avenue Charles Flahault, 34093 Montpellier cedex, France Abstract Résumé Aims: An analysis of climate data between 1950 and 2006 in the Objectifs : L'article présente, de 1950 à 2006, une analyse du Hérault department, situated in the Mediterranean of France is climat d'un département viticole français, l'Hérault, situé en zone presented. méditerranéenne. Methods and results: Data presented include the evolution of Méthodes et résultats : Les données concernent l'évolution des mean annual and seasonal temperatures, the Huglin index, total températures moyennes annuelles et saisonnières, les indices de solar radiation, night freshness index, the distribution and Huglin et de fraîcheur des nuits, la radiation solaire globale, la efficiency of rainfall and potential evapotranspiration (pET). distribution et l'efficience saisonnière des pluies et Results showed an increase in mean annual temperatures of l'evapotranspiration potentielle (Etp). Les résultats montrent une +1.3 °C between 1980 and 2006 and an increase in the mean pET augmentation des températures annuelles moyennes (+1,3 °C de which was 900 mm / year since 1999. Also, harvest dates advanced 1980 à 2006), de l'Etp moyenne annuelle (900 mm/an depuis 1999) by up to three weeks and sugar concentrations at harvest increased et un changement dans la distribution saisonnière des pluies.
    [Show full text]
  • Trends in Climate Parameters Affecting Winegrape Ripening in Northeastern Slovenia
    Vol. 58: 257–266, 2014 CLIMATE RESEARCH Published January 7 doi: 10.3354/cr01197 Clim Res Trends in climate parameters affecting winegrape ripening in northeastern Slovenia Stanko Vršiˇc1,*, Vilma Šuštar1, Borut Pulko1, Tadeja Kraner Šumenjak1,2 1Faculty of Agriculture and Life Sciences, Pivola 10, 2311 Hoˇce, Slovenia 2Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia ABSTRACT: This study examined the structure and trends in climate parameters that were impor- tant for grapevine growing between 1950 and 2009 in the wine-growing region of Styria in NE Slovenia. The study also included the dynamics of grape ripening and the timing of harvest for 4 varieties grown in the region between 1980 and 2009. Temperature and precipitation characteris- tics from 3 stations (Celje, Jeruzalem, and Maribor) in the region were organized into annual and growing-season periods and were used to assess the effects on the different varieties and on wine quality. Based on the data associated with the content of soluble solids, total acidity, and the rec- ommended date of harvest for a particular year, trends towards earlier maturity of 12−25 d were observed. In general, temperature changes were more significant after 1980 than between 1950 and 1979. The mean annual and seasonal temperatures (1980−2009) increased significantly, by 0.4 to 0.6°C per decade. The average growing-season warming rates were driven particularly by changes in maximum temperatures, with significant increases in the number of days with Tmax > 30°C. Growing-season warming has also resulted in changes in heat accumulation indices, with significant increases since 1980.
    [Show full text]