Chapter 28 – Sources of

- Magnetic Field of a Moving Charge

- Magnetic Field of a Current Element

- Magnetic Field of a Straight Current-Carrying Conductor

- Force Between Parallel Conductors

- Magnetic Field of a Circular Current Loop

- Ampere’s Law

- Applications of Ampere’s Law

- Magnetic Materials 1. Magnetic Field of a Moving Charge

- A charge creates a magnetic field only when the charge is moving.

Source point: location of the moving charge. Field point: point P where we want to find the field.

Magnetic field from a point charge moving with constant speed

µ q vsin ϕ B = 0 4π r 2

-7 2 2 2 0 = 4 π·10 Wb/A·m = N s /C = N/A = T m/A (permeability of vacuum)

1/2 c = (1/ 0ε0)  speed of light Magnetic field of a point charge moving with constant velocity    µ vq × rˆ rˆ = r / r = vector from source to field point B = 0 4π r 2

Moving Charge: Magnetic Field Lines

- The magnetic field lines are circles centered on the line of v and lying in planes perpendicular to that line. - Direction of field line : right hand rule for + charge  point right thumb in direction of v. Your fingers around the charge in direction of magnetic field lines. 2. Magnetic Field of a Current Element

- The total magnetic field caused by several moving charges is the vector sum of the fields caused by the individual charges.

dQ = nqAdl (total moving charge in volume element dl A)

Moving charges in current element are equivalent to dQ moving with drift velocity. µ dQ v sin ϕ µ n q v Adl sin ϕ µ Idl sin ϕ dB = 0 d = 0 d = 0 4π r 2 4π r 2 4π r 2

(I = n q vd A)

Current Element: Vector Magnetic Field   µ Id l × rˆ B = 0 Law of Biot and Savart 4π ∫ r 2 Current Element: Magnetic Field Lines - Field vectors (dB) and magnetic field lines of a current element (dl) are like those generated by a + charge dQ moving in direction of vdrift . - Field lines are circles in planes ┴ to dl and centered on line of dl. 3. Magnetic Field of a Straight Current-Carrying Conductor   µ Id l × rˆ B = 0 4π ∫ r 2  dl ⋅ x ld × rˆ = dl ⋅1⋅sin ϕ = dl ⋅sin( π −ϕ) = x2 + y 2 µ I a x⋅dy µ I 2a B = 0 = 0 ∫ 2 2 2/3 2 2 4π −a (x + y ) 4π x x + a

If conductors length 2a >> x µ I 2( a) µ I B = 0 = 0 B direction: into the plane of the figure, 4π ⋅ x ⋅a 2π ⋅ x perpendicular to x-y plane

µ0 I B = Field near a long, straight current-carrying conductor 2π ⋅r - lines radiate outward from + line charge distribution. They begin and end at electric charges. - Magnetic field lines encircle the current that acts as their source. They form closed loops and never have end points. -The total magnetic through any closed surface is zero  there are no isolated magnetic charges (or magnetic monopoles)  any magnetic field line that enters a closed surface must also emerge from that surface. 4. Force Between Parallel Conductors - Two conductors with current in same direction. Each conductor lies in B set-up by the other conductor.

B generated by lower conductor at the position of upper conductor: µ I B = 0 2π ⋅r    µ I F = I' L × B F = I' LB = I' L 0 2π ⋅r F µ I ⋅ I' = 0 Two long parallel current-carrying L 2π ⋅r conductors

Force on upper conductor is downward.

- Parallel conductors carrying currents in same direction attract each other. If I has contrary direction they repel each other. Magnetic Forces and Defining the Ampere

- One Ampere is the unvarying current that, if present in each of the two parallel conductors of infinite length and one meter apart in empty space, causes each conductor to experience a force of exactly 2 x 10 -7 N per meter of length. 5. Magnetic Field of a Circular Current Loop   µ Id l × rˆ 0 µ0 Idl B = ∫ 2 B = 4π r 4π r 2 µ I dl dB = 0 4π ()x2 + a2

µ0 I dl a dB x = dB cos θ = 2 2 2/1 4π ()x + a ()x2 + a2

µ0 I dl x dB y = dB sin θ = 2 2 2/1 4π ()x + a ()x2 + a2 - Rotational symmetry about x axis  no B component perpendicular to x.

For dl on opposite sides of loop, dB x are equal in magnitude and in same direction, dB y have same magnitude but opposite direction (cancel).

µ0 I adl µ0 I a µ0 I a Bx = ∫ 2/3 = 2/3 ∫ dl = 2/3 2( πa) 4π ()x2 + a2 4π ()x2 + a2 4π ()x2 + a2

2 µ0 Ia (on the axis of a circular loop) Bx = 2/3 2()x2 + a2 Magnetic Field on the Axis of Coil

2 µ0 NIa Bx = 2/3 (on the axis of N circular loops) 2()x2 + a2

µ NI B = 0 (at the center, x=0, of N circular loops) x 2a

µ = N ⋅ I ⋅ A = N ⋅ I ⋅(πa2 )

µ µ (on the axis of any B = 0 x 2π (x2 + a2 ) 2/3 number of circular loops) 6. Ampere’s Law

- Law that allows us to obtain the magnetic fields caused by highly symmetric current distributions.   ∫ B ⋅ ld = ∫ B// dl = µ0 I

Ampere’s Law for a Long Straight Conductor µ I B = 0 2πr   µ I B ⋅ ld =B dl = 0 2( π ⋅r) = µ I ∫ ∫ 2π ⋅r 0

- Direction of current: right hand rule  curl fingers of right hand around the integration path , the thumb indicates positive current direction. For an integration path that does not enclose the conductor :

µ0 I B// = B1 = (circular arc ab ) 2π ⋅r1

− µ0 I B// = −B2 = (circular arc cd ) 2π ⋅r2 B and dl antiparallel

arc = (angle) x (radius) = θ r

  b c d a ∫B ⋅ ld = ∫ B// dl =B1 ∫ dl + )0( ∫ dl + (−B2 )∫ dl + )0( ∫ dl = a b c d

µ0 I µ0 I = (r1θ ) + 0 − (r2θ ) + 0 = 0 2π ⋅r1 2π ⋅r2 around integration path. path. integration around th or on position of the of position on or th 0 =

I θ 0 d

µ ∫ =

θ  d

θ ∫ I d 0 ⋅ π 2 r µ ⋅ = B )

= θ

ϕ rd ( r cos I ⋅ ⋅ 0

µ π dl 2 ⋅ B = =  ld  ld ⋅ ⋅  B  B ∫ ∫ wire inside it. inside wire -wire the enclose not does path the If -pa the of shape the on depend not does result This Ampere’s Law: General Statement

- The total magnetic field at any point in the path is the vector sum of all fields produced by the individual conductors.   ∫ B ⋅ ld =µ0 I

-If the integration path does not enclose a wire    ∫ B ⋅ ld =0   ∫ B ⋅ ld =µ0 Iencl

  ∫ B ⋅ ld =0  does not mean that B = 0 everywhere along the path, only

that Iencl = 0.   ∫ B ⋅ ld =0

7. Applications of Ampere’s Law

Ex. 28.8 Ex. 28.9 Ex. 28.10 8. Magnetic Materials - Atoms contain moving , e- form microscopy current loops that produce magnetic fields (randomly oriented, no net Bint ). In some materials, external Bext causes these loops to orient with field, adding to the Bext  magnetized material. - An moving with speed v in a circular orbit of radius r has an angular momentum L and oppositely directed orbital magnetic dipole moment . It also has a spin angular momentum and oppositely directed spin magnetic dipole moment. e e ev I = = = T 2π ⋅r / v 2π ⋅r ev evr 2µ µ = I ⋅ A = (π ⋅r 2 ) = → v = Model of electron in an 2π ⋅r 2 e⋅r atom Angular momentum of e-: e    2µ 2µm µ = L L = r ⋅ p = r ⋅mv = r ⋅m = 2m L = r × p e⋅r e - Atomic angular momentum is quantized : L ~ h/2 π (its component along a direction is always an integer multiple of this value). (h = Planck constant = 6.626 x 10 -34 J s)

- Associated with the quantization of L is an uncertainty in direction of L and of (since they are related).

e e  h  eh −24 2 µ = L =   = = .9 274 ⋅10 Am or J /T Bohr Magneton B 2m 2m  2π  4π ⋅m

- Electrons have intrinsic angular momentum (Spin ) that is not related to orbital motion, but can be seen as spinning on an axis. The angular

momentum has an associated magnetic moment with magnitude ≈ B.

Magnetic Materials

- When magnetic materials are present, the magnetization of the material causes an additional contribution to B. Paramagnetism

- In an atom, most of the orbital and spin magnetic moments add to zero.

However, in case cases the atom has magnetic moment B. If such atom is placed on B, the field will exert a torque:

   this torque aligns the magnetic moment with magnetic field τ = µ × B (position of minimum potential energy). In that position, the current loops add to the externally applied B.

- B produced by a current loop is proportional to loop’s magnetic dipole moment  additional B produced by electron current loops proportional

to total per unit volume of material (V) = Magnetization.   µ Magnetization: M = total Units: (A m 2)/m 3 = A/m V

- Additional magnetic field due to M of material is: 0 M - When a magnetized material surrounds a current-carrying conductor, the total B is:     B = field caused by the current conductor B = B0 + µ0M 0 behavior typical of a paramagnetic material.

- The magnetic field at any point in a paramagnetic material is greater by

the factor Km (relative permeability of the material) than it will be if the material were replaced by vacuum.

- All equations from this chapter can be adapted to the situation in which the current-carrying conductor is embedded in a paramagnetic material by

replacing 0  Km 0.

Permeability: µ = Kmµ0

Careful !  We have used the same symbol “” to represent two different physical quantities, the magnetic dipole moment (a vector), and the permeability (an scalar). Paramagnetism (χm small but >0)

Magnetic Susceptibility: χm = Km −1

Km and χm are dimensionless.

- The tendency of atomic magnetic moments to align themselves parallel to B is opposed by random thermal motion

 χm decreases with increasing T.

B M = C Curie’s Law T C = constant T = temperature

- An object with magnetic dipoles is attracted to poles. Weak attraction in paramagnetic materials due to thermal randomization of magnetic moments. At low T, M increases  stronger attractive forces. Diamagnetism

- Total magnetic moment of all atomic current loops = 0 in absence of B.

- These materials can still show magnetic effects when external Bext alters e- motion in atoms  induced magnetic moment. The additional induced

B has opposite direction to Bext (see Chap. 29). - An induced current always tends to cancel the field change that caused it.

- Susceptibility χ < 0 and small.

- Relative permeability K m slightly less than 1. (FM) - Strong interactions between atomic magnetic moments cause them to align parallel to each other in regions (magnetic

domains) even when no Bext is present. Ex: Fe, Co.

- If no Bext  domain magnetizations are randomly oriented.

- If Bext  domain M tend to align parallel to field, domain boundaries shift, domains with M parallel to B grow.

-Km >> 1

- Ferromagnets are strongly magnetized by Bext and attracted to magnet.

-Saturation magnetization : M reached when all

magnetic moments from FM are aligned // Bext . Once Msat is reached, increasing Bext will not change M. - For many FM materials, the relation between M and Bext = B 0 is different when you increase or decrease B 0  hysteresis loop. Ferromagnetism

- In permanent , after Msat is reached and B 0 is reduced to zero, some M remains ( remnant magnetization ). To reduce M to zero requires B to change direction. Ferromagnetism

- Magnetizing and de-magnetizing a material that has hysteresis involves dissipation of energy  materials’ temperature increases.