Field Lines Electric Flux Recall That We Defined the Electric Field to Be the Force Per Unit Charge at a Particular Point

Total Page:16

File Type:pdf, Size:1020Kb

Field Lines Electric Flux Recall That We Defined the Electric Field to Be the Force Per Unit Charge at a Particular Point Gauss’ Law Field Lines Electric Flux Recall that we defined the electric field to be the force per unit charge at a particular point: P For a source point charge Q and a test charge q at point P q Q at P If Q is positive, then the field is directed radially away from the charge. + Note: direction of arrows Note: spacing of lines Note: straight lines If Q is negative, then the field is directed radially towards the charge. - Negative Q implies anti-parallel to Note: direction of arrows Note: spacing of lines Note: straight lines + + Field lines were introduced by Michael Faraday to help visualize the direction and magnitude of the electric field. The direction of the field at any point is given by the direction of the field line, while the magnitude of the field is given qualitatively by the density of field lines. In the above diagrams, the simplest examples are given where the field is spherically symmetric. The direction of the field is apparent in the figures. At a point charge, field lines converge so that their density is large - the density scales in proportion to the inverse of the distance squared, as does the field. As is apparent in the diagrams, field lines start on positive charges and end on negative charges. This is all convention, but it nonetheless useful to remember. - + This figure portrays several useful concepts. For example, near the point charges (that is, at a distance that is small compared to their separation), the field becomes spherically symmetric. This makes sense - near a charge, the field from that one charge certainly should dominate the net electric field since it is so large. Along a line (more accurately, a plane) bisecting the line joining the charges, we see that the field is directed along the -x direction as shown. + + In this case, we see the zero-field region precisely between the two charges, and we also see a fairly rapid convergence on a spherically symmetric distribution of field lines. Example (Question) The figure shows the electric field lines for a system of two point charges. (a) What are the relative magnitudes of the charges? (b) What are the signs of the charges? (c) In what regions of space is the electric field strong? weak? Example (Solution) The figure shows the electric field lines for a system of two point charges. (a) What are the relative magnitudes of the charges? (b) What are the signs of the charges? (c) In what regions of space is the electric field strong? weak? a) There are 32 lines coming from the charge on the left, while there are 8 converging on that on the right. Thus, the one on the left is 4 times larger than the one on the right. Example (Solution) The figure shows the electric field lines for a system of two point charges. (a) What are the relative magnitudes of the charges? (b) What are the signs of the charges? (c) In what regions of space is the electric field strong? weak? • The one on the left is positive; field lines leave it. The one on the right is negative; field lines end on it. Example (Solution) The figure shows the electric field lines for a system of two point charges. (a) What are the relative magnitudes of the charges? (b) What are the signs of the charges? (c) In what regions of space is the electric field strong? weak? • The field is strong near both charges. It is strongest on a line connecting the charges. Few field lines are drawn there, but this is for clarity. The field is weakest to the right of the right hand charge. END How would you measure 'the density of electric field lines' in a vicinity of space? First think only of a discrete set of electric field lines. One o b v i o u s a n s w e r t o t h e question is that you would count the number of lines passing through an imaginary geometrical (not real!) surface. The first two are obvious, and the Uniform electric field - the following diagram lines have constant density will indicate the and are all parallel last: The maximum number o f f i e l d l i n e s i s intercepted when the Surface is inserted in three surface is perpendicular different orientations and to the field, while no field lines will pass intersects the electric field through it when the lines. surface is parallel to the field. N u m b e r o f N u m b e r o f Number of field f i e l d l i n e s f i e l d l i n e s l i n e s p a s s i n g passing through passing through through surface is surface is large surface is zero between zero and the maximum. Depends on the orientation angle θ. Electric flux a function of surface orientation, … relative to the electric field In general, the number of field lines passing through an area A is directly proportional to cos(θ), where θ is the angle between the electric field vector and the normal to the surface vector. Use this symbol to represent electric flux through a surface Increasing surface area Increasing electric field The electric flux through the blue surface is the same in these two figures. Electric flux is proportional to the product of electric field and surface area A. The number of field lines passing through a geometrical surface of given area depends on three things: the field strength, the area, and the orientation of the surface. [E]-Electric field; Newton/Coulomb {N/C} [A]-Surface area; meter2 {m2} [θ]-Angle; degrees or radians {o, rad } 2 2 [ΦE]-Electric flux; Newton meter /Coulomb {Nm /C} Example (Question) A uniform electric field of 2.1 kN/C passes through a rectangular area 22 cm by 28 cm. The field makes an angle of 30o with the normal to the area. Determine the electric flux through the rectangle. Area A Example (Solution) A uniform electric field of 2.1 kN/C passes through a rectangular area 22 cm by 28 cm. The field makes an angle of 30o with the normal to the area. Determine the electric flux through the rectangle. 30o 2.1kN/C 0.22 m X0.28 m = 0.062 m2 22 cm 28 cm END It is useful also to represent the area A by a vector. The length of the vector is given by the area (a scalar quantity), while the orientation is perpendicular to the area. With this definition, the flux can be defined as: recall A slightly different notation for electric flux: Unit vector perpendicular to surface of area A WHAT IF THE SURFACE IS CURVED AND/OR THE FIELD VARIES WITH POSITION? Element of surface area dA q Surface Consider the surface as made up of small elements over which the electric field is uniform. Flux for Non-Uniform Fields / Flux for Non-Uniform Surface You might have noticed that all these equations really only work for uniform electric fields. We can use them here provided we make them pertain to differential (small) area elements, and over a differential area the field is uniform. We then need to integrate (sum) to get the total flux through an extended surface in a non-uniform field. Flux for Non-Uniform Fields / Flux for Non-Uniform Surface The differential electric flux passing through a differential area is given by: Element of surface area dA As before, dA is a vector oriented perpendicular to the area, and the area itself is differential (i.e., it's infinitesimally small and it's shape doesn't usually matter). The total electric flux can be evaluated by integrating this differential flux over the surface. Element of surface area dA Flux for Non-Uniform Fields / Flux for Non-Uniform Surface Flux for one segment Surface Total flux through surface q THE INTEGRAL IS TAKEN OVER THE ENTIRE SURFACE. Divide surface into small elements dA THE BASIC DEFINITION OF ELECTRIC FLUX Example (Question) A positive test charge of magnitude 3.0µC is surrounded by a sphere with radius 0.20 m centered on the charge. Find the electric flux through the sphere due to this charge. + At any point on the sphere the magnitude of the electric field is: + Point charge electric field at distance r from charge E = 6.75 X 105 N/C From symmetry the field is perpendicular to the spherical surface at every point. + Same direction on the surface The electric field has the same magnitude over the spherical surface. It is thus constant and may be taken outside the integral + The integral that remains is just the surface area of the sphere. The electric flux through the spherical surface is: + E = 6.75 X 105 N/C END Example (Question) A positive test charge of magnitude 3.0µC is surrounded by a sphere with radius 0.20 m centered on the charge. Find the electric flux through the sphere due to this charge. Consider the same example again, but this time we save the calculations for the + end. At any point on the sphere the magnitude of the electric field is: + Point charge electric field at distance r from charge The electric field has the same magnitude over the spherical surface. It is thus constant and may be taken outside the integral + The integral that remains is just the surface area of the sphere.
Recommended publications
  • Particle Motion
    Physics of fusion power Lecture 5: particle motion Gyro motion The Lorentz force leads to a gyration of the particles around the magnetic field We will write the motion as The Lorentz force leads to a gyration of the charged particles Parallel and rapid gyro-motion around the field line Typical values For 10 keV and B = 5T. The Larmor radius of the Deuterium ions is around 4 mm for the electrons around 0.07 mm Note that the alpha particles have an energy of 3.5 MeV and consequently a Larmor radius of 5.4 cm Typical values of the cyclotron frequency are 80 MHz for Hydrogen and 130 GHz for the electrons Often the frequency is much larger than that of the physics processes of interest. One can average over time One can not however neglect the finite Larmor radius since it lead to specific effects (although it is small) Additional Force F Consider now a finite additional force F For the parallel motion this leads to a trivial acceleration Perpendicular motion: The equation above is a linear ordinary differential equation for the velocity. The gyro-motion is the homogeneous solution. The inhomogeneous solution Drift velocity Inhomogeneous solution Solution of the equation Physical picture of the drift The force accelerates the particle leading to a higher velocity The higher velocity however means a larger Larmor radius The circular orbit no longer closes on itself A drift results. Physics picture behind the drift velocity FxB Electric field Using the formula And the force due to the electric field One directly obtains the so-called ExB velocity Note this drift is independent of the charge as well as the mass of the particles Electric field that depends on time If the electric field depends on time, an additional drift appears Polarization drift.
    [Show full text]
  • 19-8 Magnetic Field from Loops and Coils
    Answer to Essential Question 19.7: To get a net magnetic field of zero, the two fields must point in opposite directions. This happens only along the straight line that passes through the wires, in between the wires. The current in wire 1 is three times larger than that in wire 2, so the point where the net magnetic field is zero is three times farther from wire 1 than from wire 2. This point is 30 cm to the right of wire 1 and 10 cm to the left of wire 2. 19-8 Magnetic Field from Loops and Coils The Magnetic Field from a Current Loop Let’s take a straight current-carrying wire and bend it into a complete circle. As shown in Figure 19.27, the field lines pass through the loop in one direction and wrap around outside the loop so the lines are continuous. The field is strongest near the wire. For a loop of radius R and current I, the magnetic field in the exact center of the loop has a magnitude of . (Equation 19.11: The magnetic field at the center of a current loop) The direction of the loop’s magnetic field can be found by the same right-hand rule we used for the long straight wire. Point the thumb of your right hand in the direction of the current flow along a particular segment of the loop. When you curl your fingers, they curl the way the magnetic field lines curl near that segment. The roles of the fingers and thumb can be reversed: if you curl the fingers on Figure 19.27: (a) A side view of the magnetic field your right hand in the way the current goes around from a current loop.
    [Show full text]
  • Connects Charge and Field 3. Applications of Gauss's
    Gauss Law 1. Review on 1) Coulomb’s Law (charge and force) 2) Electric Field (field and force) 2. Gauss’s Law: connects charge and field 3. Applications of Gauss’s Law Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges ! q q F = K 1 2 rˆ e e r2 12 Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges ! q q F = K 1 2 rˆ e e r2 12 l The electric field is defined as Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges ! q q F = K 1 2 rˆ e e r2 12 l The electric field is defined! as ! F E ≡ q0 and is represented through field lines. Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges ! q q F = K 1 2 rˆ e e r2 12 l The electric field is defined! as ! F E ≡ q0 and is represented through field lines. l The force a charge experiences in an electric filed is Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges ! q q F = K 1 2 rˆ e e r2 12 l The electric field is defined! as ! F E ≡ q0 and is represented through field lines. l The force a charge experiences in an electric filed is ! ! F = q0E Coulomb’s Law and Electric Field l Coulomb’s Law: the force between two point charges ! q q F = K 1 2 rˆ e e r2 12 l The electric field is defined! as ! F E ≡ q0 and is represented through field lines.
    [Show full text]
  • 21. Maxwell's Equations. Electromagnetic Waves
    University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II -- Slides PHY 204: Elementary Physics II (2021) 2020 21. Maxwell's equations. Electromagnetic waves Gerhard Müller University of Rhode Island, [email protected] Robert Coyne University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/phy204-slides Recommended Citation Müller, Gerhard and Coyne, Robert, "21. Maxwell's equations. Electromagnetic waves" (2020). PHY 204: Elementary Physics II -- Slides. Paper 46. https://digitalcommons.uri.edu/phy204-slides/46https://digitalcommons.uri.edu/phy204-slides/46 This Course Material is brought to you for free and open access by the PHY 204: Elementary Physics II (2021) at DigitalCommons@URI. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Dynamics of Particles and Fields Dynamics of Charged Particle: • Newton’s equation of motion: ~F = m~a. • Lorentz force: ~F = q(~E +~v ×~B). Dynamics of Electric and Magnetic Fields: I q • Gauss’ law for electric field: ~E · d~A = . e0 I • Gauss’ law for magnetic field: ~B · d~A = 0. I dF Z • Faraday’s law: ~E · d~` = − B , where F = ~B · d~A. dt B I dF Z • Ampere’s` law: ~B · d~` = m I + m e E , where F = ~E · d~A. 0 0 0 dt E Maxwell’s equations: 4 relations between fields (~E,~B) and sources (q, I). tsl314 Gauss’s Law for Electric Field The net electric flux FE through any closed surface is equal to the net charge Qin inside divided by the permittivity constant e0: I ~ ~ Qin Qin −12 2 −1 −2 E · dA = 4pkQin = i.e.
    [Show full text]
  • A) Electric Flux B) Field Lines Gauss'
    Electricity & Magnetism Lecture 3 Today’s Concepts: A) Electric Flux Gauss’ Law B) Field Lines Electricity & Magnetism Lecture 3, Slide 1 Your Comments “Is Eo (epsilon knot) a fixed number? ” “epsilon 0 seems to be a derived quantity. Where does it come from?” q 1 q ˆ ˆ E = k 2 r E = 2 2 r IT’S JUST A r 4e or r CONSTANT 1 k = 9 x 109 N m2 / C2 k e = 8.85 x 10-12 C2 / N·m2 4e o o “I fluxing love physics!” “My only point of confusion is this: if we can represent any flux through any surface as the total charge divided by a constant, why do we even bother with the integral definition? is that for non-closed surfaces or something? These concepts are a lot harder to grasp than mechanics. WHEW.....this stuff was quite abstract.....it always seems as though I feel like I understand the material after watching the prelecture, but then get many of the clicker questions wrong in lecture...any idea why or advice?? Thanks 05 Electricity & Magnetism Lecture 3, Slide 2 Electric Field Lines Direction & Density of Lines represent Direction & Magnitude of E Point Charge: Direction is radial Density 1/R2 07 Electricity & Magnetism Lecture 3, Slide 3 Electric Field Lines Legend 1 line = 3 mC Dipole Charge Distribution: “Please discuss further how the number of field lines is determined. Is this just convention? I feel Direction & Density as if the "number" of field lines is arbitrary, much more interesting. because the field is a vector field and is defined for all points in space.
    [Show full text]
  • Principle and Characteristic of Lorentz Force Propeller
    J. Electromagnetic Analysis & Applications, 2009, 1: 229-235 229 doi:10.4236/jemaa.2009.14034 Published Online December 2009 (http://www.SciRP.org/journal/jemaa) Principle and Characteristic of Lorentz Force Propeller Jing ZHU Northwest Polytechnical University, Xi’an, Shaanxi, China. Email: [email protected] Received August 4th, 2009; revised September 1st, 2009; accepted September 9th, 2009. ABSTRACT This paper analyzes two methods that a magnetic field can be generated, and classifies them under two types: 1) Self-field: a magnetic field can be generated by electrically charged particles move, and its characteristic is that it can’t be independent of the electrically charged particles. 2) Radiation field: a magnetic field can be generated by electric field change, and its characteristic is that it independently exists. Lorentz Force Propeller (ab. LFP) utilize the charac- teristic that radiation magnetic field independently exists. The carrier of the moving electrically charged particles and the device generating the changing electric field are fixed together to form a system. When the moving electrically charged particles under the action of the Lorentz force in the radiation magnetic field, the system achieves propulsion. Same as rocket engine, the LFP achieves propulsion in vacuum. LFP can generate propulsive force only by electric energy and no propellant is required. The main disadvantage of LFP is that the ratio of propulsive force to weight is small. Keywords: Electric Field, Magnetic Field, Self-Field, Radiation Field, the Lorentz Force 1. Introduction also due to the changes in observation angle.) “If the electric quantity carried by the particles is certain, the The magnetic field generated by a changing electric field magnetic field generated by the particles is entirely de- is a kind of radiation field and it independently exists.
    [Show full text]
  • Physics 115 Lightning Gauss's Law Electrical Potential Energy Electric
    Physics 115 General Physics II Session 18 Lightning Gauss’s Law Electrical potential energy Electric potential V • R. J. Wilkes • Email: [email protected] • Home page: http://courses.washington.edu/phy115a/ 5/1/14 1 Lecture Schedule (up to exam 2) Today 5/1/14 Physics 115 2 Example: Electron Moving in a Perpendicular Electric Field ...similar to prob. 19-101 in textbook 6 • Electron has v0 = 1.00x10 m/s i • Enters uniform electric field E = 2000 N/C (down) (a) Compare the electric and gravitational forces on the electron. (b) By how much is the electron deflected after travelling 1.0 cm in the x direction? y x F eE e = 1 2 Δy = ayt , ay = Fnet / m = (eE ↑+mg ↓) / m ≈ eE / m Fg mg 2 −19 ! $2 (1.60×10 C)(2000 N/C) 1 ! eE $ 2 Δx eE Δx = −31 Δy = # &t , v >> v → t ≈ → Δy = # & (9.11×10 kg)(9.8 N/kg) x y 2" m % vx 2m" vx % 13 = 3.6×10 2 (1.60×10−19 C)(2000 N/C)! (0.01 m) $ = −31 # 6 & (Math typos corrected) 2(9.11×10 kg) "(1.0×10 m/s)% 5/1/14 Physics 115 = 0.018 m =1.8 cm (upward) 3 Big Static Charges: About Lightning • Lightning = huge electric discharge • Clouds get charged through friction – Clouds rub against mountains – Raindrops/ice particles carry charge • Discharge may carry 100,000 amperes – What’s an ampere ? Definition soon… • 1 kilometer long arc means 3 billion volts! – What’s a volt ? Definition soon… – High voltage breaks down air’s resistance – What’s resistance? Definition soon..
    [Show full text]
  • Electric Flux Density, Gauss's Law, and Divergence
    www.getmyuni.com CHAPTER3 ELECTRIC FLUX DENSITY, GAUSS'S LAW, AND DIVERGENCE After drawinga few of the fields described in the previous chapter and becoming familiar with the concept of the streamlines which show the direction of the force on a test charge at every point, it is difficult to avoid giving these lines a physical significance and thinking of them as flux lines. No physical particle is projected radially outward from the point charge, and there are no steel tentacles reaching out to attract or repel an unwary test charge, but as soon as the streamlines are drawn on paper there seems to be a picture showing``something''is present. It is very helpful to invent an electric flux which streams away symmetri- cally from a point charge and is coincident with the streamlines and to visualize this flux wherever an electric field is present. This chapter introduces and uses the concept of electric flux and electric flux density to solve again several of the problems presented in the last chapter. The work here turns out to be much easier, and this is due to the extremely symmetrical problems which we are solving. www.getmyuni.com 3.1 ELECTRIC FLUX DENSITY About 1837 the Director of the Royal Society in London, Michael Faraday, became very interested in static electric fields and the effect of various insulating materials on these fields. This problem had been botheringhim duringthe past ten years when he was experimentingin his now famous work on induced elec- tromotive force, which we shall discuss in Chap. 10.
    [Show full text]
  • Physics 2102 Lecture 2
    Physics 2102 Jonathan Dowling PPhhyyssicicss 22110022 LLeeccttuurree 22 Charles-Augustin de Coulomb EElleeccttrriicc FFiieellddss (1736-1806) January 17, 07 Version: 1/17/07 WWhhaatt aarree wwee ggooiinngg ttoo lleeaarrnn?? AA rrooaadd mmaapp • Electric charge Electric force on other electric charges Electric field, and electric potential • Moving electric charges : current • Electronic circuit components: batteries, resistors, capacitors • Electric currents Magnetic field Magnetic force on moving charges • Time-varying magnetic field Electric Field • More circuit components: inductors. • Electromagnetic waves light waves • Geometrical Optics (light rays). • Physical optics (light waves) CoulombCoulomb’’ss lawlaw +q1 F12 F21 !q2 r12 For charges in a k | q || q | VACUUM | F | 1 2 12 = 2 2 N m r k = 8.99 !109 12 C 2 Often, we write k as: 2 1 !12 C k = with #0 = 8.85"10 2 4$#0 N m EEleleccttrricic FFieieldldss • Electric field E at some point in space is defined as the force experienced by an imaginary point charge of +1 C, divided by Electric field of a point charge 1 C. • Note that E is a VECTOR. +1 C • Since E is the force per unit q charge, it is measured in units of E N/C. • We measure the electric field R using very small “test charges”, and dividing the measured force k | q | by the magnitude of the charge. | E |= R2 SSuuppeerrppoossititioionn • Question: How do we figure out the field due to several point charges? • Answer: consider one charge at a time, calculate the field (a vector!) produced by each charge, and then add all the vectors! (“superposition”) • Useful to look out for SYMMETRY to simplify calculations! Example Total electric field +q -2q • 4 charges are placed at the corners of a square as shown.
    [Show full text]
  • Ee334lect37summaryelectroma
    EE334 Electromagnetic Theory I Todd Kaiser Maxwell’s Equations: Maxwell’s equations were developed on experimental evidence and have been found to govern all classical electromagnetic phenomena. They can be written in differential or integral form. r r r Gauss'sLaw ∇ ⋅ D = ρ D ⋅ dS = ρ dv = Q ∫∫ enclosed SV r r r Nomagneticmonopoles ∇ ⋅ B = 0 ∫ B ⋅ dS = 0 S r r ∂B r r ∂ r r Faraday'sLaw ∇× E = − E ⋅ dl = − B ⋅ dS ∫∫S ∂t C ∂t r r r ∂D r r r r ∂ r r Modified Ampere'sLaw ∇× H = J + H ⋅ dl = J ⋅ dS + D ⋅ dS ∫ ∫∫SS ∂t C ∂t where: E = Electric Field Intensity (V/m) D = Electric Flux Density (C/m2) H = Magnetic Field Intensity (A/m) B = Magnetic Flux Density (T) J = Electric Current Density (A/m2) ρ = Electric Charge Density (C/m3) The Continuity Equation for current is consistent with Maxwell’s Equations and the conservation of charge. It can be used to derive Kirchhoff’s Current Law: r ∂ρ ∂ρ r ∇ ⋅ J + = 0 if = 0 ∇ ⋅ J = 0 implies KCL ∂t ∂t Constitutive Relationships: The field intensities and flux densities are related by using the constitutive equations. In general, the permittivity (ε) and the permeability (µ) are tensors (different values in different directions) and are functions of the material. In simple materials they are scalars. r r r r D = ε E ⇒ D = ε rε 0 E r r r r B = µ H ⇒ B = µ r µ0 H where: εr = Relative permittivity ε0 = Vacuum permittivity µr = Relative permeability µ0 = Vacuum permeability Boundary Conditions: At abrupt interfaces between different materials the following conditions hold: r r r r nˆ × (E1 − E2 )= 0 nˆ ⋅(D1 − D2 )= ρ S r r r r r nˆ × ()H1 − H 2 = J S nˆ ⋅ ()B1 − B2 = 0 where: n is the normal vector from region-2 to region-1 Js is the surface current density (A/m) 2 ρs is the surface charge density (C/m ) 1 Electrostatic Fields: When there are no time dependent fields, electric and magnetic fields can exist as independent fields.
    [Show full text]
  • Electric Flux, and Gauss' Law Finding the Electric Field Due to a Bunch Of
    27-1 (SJP, Phys 1120) Electric flux, and Gauss' law Finding the Electric field due to a bunch of charges is KEY! Once you know E, you know the force on any charge you put down - you can predict (or control) motion of electric charges! We're talking manipulation of anything from DNA to electrons in circuits... But as you've seen, it's a pain to start from Coulomb's law and add all those darn vectors. Fortunately, there is a remarkable law, called Gauss' law, which is a universal law of nature that describes electricity. It is more general than Coulomb's law, but includes Coulomb's law as a special case. It is always true... and sometimes VERY useful to figure out E fields! But to make sense of it, we really need a new concept, Electric Flux (Called Φ). So first a "flux interlude": Imagine an E field whose field lines "cut through" or "pierce" a loop. Define θ as the angle between E and the "normal" E or "perpendicular" direction to the loop. We will now define a new quantity, the electric ! flux through the loop, as A, the Flux, or Φ = E⊥ A = E A cosθ "normal" to the loop E⊥ is the component of E perpendicular to the loop: E⊥ = E cosθ. For convenience, people will often characterize the area of a small patch (like the loop above) as a vector instead of just a number. The magnitude of the area vector is just... the area! (What else?) But the direction of the area vector is the normal to the loop.
    [Show full text]
  • Maxwell's Equations
    Lecture 22 Physics II Chapter 31 Maxwell’s equations Finally, I see the goal, the summit of this “Everest” PHYS.1440 Lecture 22 Danylov Department of Physics and Applied Physics Today we are going to discuss: Chapter 31: Section 31.2-4 PHYS.1440 Lecture 22 Danylov Department of Physics and Applied Physics Let’s revisit Ampere’s Law a straight wire with current I The line integral of the magnetic field around ∙ the curve is given by Ampère’s law: Any closed loop Current which goes through (Amperian loop) ANY surface enclosed by an amperian loop Let’s consider a straight wire with current I: Surface S1 (flat) Surface S2 In this example both surfaces (S1 and S2) give us the same enclosed current, as it I should be since Ampere’s law must work for any possible situation. Great! Ampere’s Law works! Amperian loop PHYS.1440 Lecture 22 Danylov Department of Physics and Applied Physics Let’s revisit Ampere’s Law for current I and a capacitor Let’s consider a wire with current I and a capacitor: +Q –Q Surface S1 (flat) I Amperian loop Surface S2 Let’s apply Ampere’s law for both surfaces (S1 and S2): ∙ The LH sides are the same, but the RH ∙ sides are different!!?? Amperian loop Surface S1 (flat) Something is missing in Ampere’s law. So! ∙ ∙ Ampere’s Law needs to be adjusted! Amperian loop Surface S2 (curved) PHYS.1440 Lecture 22 Danylov Department of Physics and Applied Physics Displacement current/ Ampere-Maxwell Law Let’s get somehow an additional term with units of current and use it to generalize Ampere’s Law +Q –Q ≝ E I=dQ/dt I d But we need something which has units of current.
    [Show full text]