Sequencing and Phylogenetic Analysis of Chloroplast Genes in Freshwater Raphidophytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sea Slug Podcast Transcript Eastern Emerald Elysia, Elysia Chlorotica
The One Species at a Time podcast series explores the world of biodiversity in short audio podcasts and narrated Google Earth Tour videos. Hosted by Ari Daniel Shapiro, the series is produced by the Encyclopedia of Life and Atlantic Public Media. Sea Slug Podcast Transcript Eastern emerald elysia, Elysia chlorotica Ari: For the Encyclopedia of Life, I’m Ari Daniel Shapiro. And this is: One Species at a Time. There was a moment, 30 years ago, that changed the direction and focus of Skip Pierce’s career. He’s a biologist at the University of South Florida, and he spends his summers at a lab in Woods Hole, Massachusetts. Pierce: This student walked into my lab with this little green sea slug. And I said, “Where the hell did you get that?” And she said, “Well, right out here in the mill pond, you know?” And I mean, I’d been working here for 15 years or so, and I’d never seen it at all. Nor had anybody else that’s worked at the lab. And I thought, “Well, that’s weird.” Ari: Weird – first of all – because of where it was found. Pierce: It lived in a place where sea slugs shouldn’t be – namely this pond that’s subjected to rain and tides and heat and ice and everything else in the winter – because slugs have no external protection. They’re just sittin’ out there in the environment. Ari: And weird – second of all – because… Pierce: It was just a bright, deep green color. Ari: Make no mistake, these sea slugs – or Elysia chlorotica – they’ve definitely got those basic slug-like characteristics… Pierce: You know, it moves slow, doesn’t think much, covered with mucus. -
The Origin of Alternation of Generations in Land Plants
Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular -
Seasonal Variation in Abundance and Species Composition of the Parmales Community in the Oyashio Region, Western North Pacific
Vol. 75: 207–223, 2015 AQUATIC MICROBIAL ECOLOGY Published online July 6 doi: 10.3354/ame01756 Aquat Microb Ecol Seasonal variation in abundance and species composition of the Parmales community in the Oyashio region, western North Pacific Mutsuo Ichinomiya1,*, Akira Kuwata2 1Prefectural University of Kumamoto, 3-1-100 Tsukide, Kumamoto 862-8502, Japan 2Tohoku National Fisheries Research Institute, Shinhamacho 3−27−5, Shiogama, Miyagi 985−0001, Japan ABSTRACT: Seasonal variation in abundance and species composition of the Parmales commu- nity (siliceous pico-eukaryotic marine phytoplankton) was investigated off the south coast of Hokkaido, Japan, in the western North Pacific. Growth rates under various temperatures (0 to 20°C) were also measured using 3 Parmales culture strains, Triparma laevis f. inornata, Triparma laevis f. longispina and Triparma strigata. Distribution of Parmales abundance was coupled with the occurrence of Oyashio water, which originates from the cold Oyashio Current. In March and May, the water temperature was usually low (<10°C) and the water column was vertically mixed. Parmales was often abundant (>1 × 102 cells ml−1) and evenly distributed from 0 down to 100 m. In contrast, when water stratification was well developed in July and October, Parmales was almost absent above the pycnocline at >15°C, but had an abundance of >1 × 102 cells ml−1 in the sub - surface layer of 30 to 50 m at <10°C. The seasonal variations in the vertical distributions of the 3 dominant species (Triparma laevis, Triparma strigata and Tetraparma pelagica) were similar to each other. Growth experiments revealed that Triparma laevis f. inornata and Triparma strigata, and Triparma laevis f. -
Chemical Signaling in Diatom-Parasite Interactions
Friedrich-Schiller-Universität Jena Chemisch-Geowissenschaftliche Fakultät Max-Planck-Institut für chemische Ökologie Chemical signaling in diatom-parasite interactions Masterarbeit zur Erlangung des akademischen Grades Master of Science (M. Sc.) im Studiengang Chemische Biologie vorgelegt von Alina Hera geb. am 30.03.1993 in Kempten Erstgutachter: Prof. Dr. Georg Pohnert Zweitgutachter: Dr. rer. nat. Thomas Wichard Jena, 21. November 2019 Table of contents List of Abbreviations ................................................................................................................ III List of Figures .......................................................................................................................... IV List of Tables ............................................................................................................................. V 1. Introduction ............................................................................................................................ 1 2. Objectives of the Thesis ....................................................................................................... 11 3. Material and Methods ........................................................................................................... 12 3.1 Materials ......................................................................................................................... 12 3.2 Microbial strains and growth conditions ........................................................................ 12 3.3 -
Cell Wall Ribosomes Nucleus Chloroplast Cytoplasm
Cell Wall Ribosomes Nucleus Nickname: Protector Nickname: Protein Maker Nickname: Brain The cell wall is the outer covering of a Plant cell. It is Ribosomes read the recipe from the The nucleus is the largest organelle in a cell. The a strong and stiff and made of DNA and use this recipe to make nucleus directs all activity in the cell. It also controls cellulose. It supports and protects the plant cell by proteins. The nucleus tells the the growth and reproduction of the cell. holding it upright. It ribosomes which proteins to make. In humans, the nucleus contains 46 chromosomes allows water, oxygen and carbon dioxide to pass in out They are found in both plant and which are the instructions for all the activities in your of plant cell. animal cells. In a cell they can be found cell and body. floating around in the cytoplasm or attached to the endoplasmic reticulum. Chloroplast Cytoplasm Endoplasmic Reticulum Nickname: Oven Nickname: Gel Nickname: Highway Chloroplasts are oval structures that that contain a green Cytoplasm is the gel like fluid inside a The endoplasmic reticulum (ER) is the transportation pigment called chlorophyll. This allows plants to make cell. The organelles are floating around in center for the cell. The ER is like the conveyor belt, you their own food through the process of photosynthesis. this fluid. would see at a supermarket, except instead of moving your groceries it moves proteins from one part of the cell Chloroplasts are necessary for photosynthesis, the food to another. The Endoplasmic Reticulum looks like a making process, to occur. -
Cephaleuros Species, the Plant-Parasitic Green Algae
Plant Disease Aug. 2008 PD-43 Cephaleuros Species, the Plant-Parasitic Green Algae Scot C. Nelson Department of Plant and Environmental Protection Sciences ephaleuros species are filamentous green algae For information on other Cephaleuros species and and parasites of higher plants. In Hawai‘i, at least their diseases in our region, please refer to the technical twoC of horticultural importance are known: Cephaleu- report by Fred Brooks (in References). To see images of ros virescens and Cephaleuros parasiticus. Typically Cephaleuros minimus on noni in American Samoa, visit harmless, generally causing minor diseases character- the Hawai‘i Pest and Disease Image Gallery (www.ctahr. ized by negligible leaf spots, on certain crops in moist hawaii.edu/nelsons/Misc), and click on “noni.” environments these algal diseases can cause economic injury to plant leaves, fruits, and stems. C. virescens is The pathogen the most frequently reported algal pathogen of higher The disease is called algal leaf spot, algal fruit spot, and plants worldwide and has the broadest host range among green scurf; Cephaleuros infections on tea and coffee Cephaleuros species. Frequent rains and warm weather plants have been called “red rust.” These are aerophilic, are favorable conditions for these pathogens. For hosts, filamentous green algae. Although aerophilic and ter- poor plant nutrition, poor soil drainage, and stagnant air restrial, they require a film of water to complete their are predisposing factors to infection by the algae. life cycles. The genus Cephaleuros is a member of the Symptoms and crop damage can vary greatly depend- Trentepohliales and a unique order, Chlorophyta, which ing on the combination of Cephaleuros species, hosts and contains the photosynthetic organisms known as green environments. -
Photosynthesis... Using Algae Wrapped in Jelly Balls
Student Sheet 23 www.saps.org.uk Photosynthesis... using algae wrapped in jelly balls Algae can be considered as one-celled plants, and they usually live in water. You are going to use algae to look at the rate of photosynthesis. The algae are tiny and are difficult to work with directly in the water so the first part of the practical involves ‘immobilising’ the algae. This effectively traps large numbers of algal cells in ‘jelly like’ balls so that we can keep them in one place and not lose them. We use sodium alginate to help make the jelly. Sodium alginate is not harmful to the algae. When these algae are ‘wrapped up’ in the jelly balls they are excellent to use in experiments on photosynthesis. These algal balls are: • cheap to grow and easy to make – you will be able to make hundreds in a very short time • easy to get a standard quantity of plant material because each of the balls is approximately the same volume • easy to keep alive for several weeks so you can keep them for future experiments 1. First you need to obtain a 2. Now you have millions of algal 3. Finally we’re going to make the concentrated suspension of algae. cells in a small volume of liquid. balls… Do this by removing some of the It’s time to mix them into your liquid medium in which they are ‘jelly’. Pour the green mixture through growing in one of two ways. an open-ended syringe into a 2% Pour about 2.5cm3 of jelly (sodium solution of calcium chloride. -
Brown Algae and 4) the Oomycetes (Water Molds)
Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level. -
First Findings of the Benthic Macroalgae Vaucheria Cf. Dichotoma (Xanthophyceae) and Punctaria Tenuissima (Phaeophyceae) in Estonian Coastal Waters
Estonian Journal of Ecology, 2012, 61, 2, 135–147 doi: 10.3176/eco.2012.2.05 First findings of the benthic macroalgae Vaucheria cf. dichotoma (Xanthophyceae) and Punctaria tenuissima (Phaeophyceae) in Estonian coastal waters Priit Kersen Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia; [email protected] Received 19 December 2011, revised 7 March 2012, accepted 8 March 2012 Abstract. The north-eastern Baltic Sea is known to have relatively low species richness due to unfavourable salinity for many species. Here I report new records of two phytobenthic species for the Estonian marine flora: the yellow-green alga Vaucheria cf. dichotoma (L.) Martius and the epiphytic brown alga Punctaria tenuissima (C. Agardh) Greville. Besides, the former is the first observation of a species of the class Xanthophyceae in the Estonian coastal waters and is the first macrophytobenthic record of the class in the entire Gulf of Riga. The brown alga P. tenuissima was found for the first time in the entire Gulf of Finland. Morphological characteristics are shown for both species and possible reasons behind the new records are discussed. Key words: yellow-green algae, brown algae, NE Baltic Sea, phytobenthos, distribution, wrack flora, epiphytes. INTRODUCTION The Baltic Sea is the world’s largest brackish water body. It holds nearly 400 macroalgal species across the wide latitudinal salinity gradient, with a rapid decline in marine species richness from south to north (Middelboe et al., 1997; Larsen & Sand-Jensen, 2006). The lowest richness is predicted to be found at the horohalinicum salinity (5–8) and is reflected in relatively low macroalgal species in the NE Baltic Sea (Schubert et al., 2011). -
Insights Into Alexandrium Minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis Through Comprehensive Transcriptome Survey
biology Article Insights into Alexandrium minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis through Comprehensive Transcriptome Survey Muhamad Afiq Akbar 1, Nurul Yuziana Mohd Yusof 2 , Fathul Karim Sahrani 2, Gires Usup 2, Asmat Ahmad 1, Syarul Nataqain Baharum 3 , Nor Azlan Nor Muhammad 3 and Hamidun Bunawan 3,* 1 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; muhdafi[email protected] (M.A.A.); [email protected] (A.A.) 2 Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (N.Y.M.Y.); [email protected] (F.K.S.); [email protected] (G.U.) 3 Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (S.N.B.); [email protected] (N.A.N.M.) * Correspondence: [email protected]; Tel.: +60-389-214-570 Simple Summary: Alexandrium minutum is one of the causing organisms for the occurrence of harmful algae bloom (HABs) in marine ecosystems. This species produces saxitoxin, one of the deadliest neurotoxins which can cause human mortality. However, molecular information such as genes and proteins catalog on this species is still lacking. Therefore, this study has successfully Citation: Akbar, M.A.; Yusof, N.Y.M.; characterized several new molecular mechanisms regarding A. minutum environmental adaptation Sahrani, F.K.; Usup, G.; Ahmad, A.; and saxitoxin biosynthesis. Ultimately, this study provides a valuable resource for facilitating future Baharum, S.N.; Muhammad, N.A.N.; dinoflagellates’ molecular response to environmental changes. -
(SSC) Region of Chloroplast Genomes1
NEWS & VIEWS AMERICAN JOURNAL OF BOTANY LETTER TO THE EDITOR Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes1 Joseph F. Walker 2 , Robert K. Jansen 3,4 , Michael J. Zanis 5 , and Nancy C. Emery6,7 Modern sequencing technology has led to a proliferation of whole- Walker et al., 2014 ; Zhang et al., 2014 ; Wang et al., 2015 ). Th ese genome sequences of chloroplasts in a growing number of plant analyses compare the SSC orientation among lineages using a single lineages, bringing opportunities for comparisons that provide in- plastome to represent each lineage and thus have missed the within- sights into the evolutionary history of the plastomes and their host individual variation that exists in this region. Currently, whole- plants ( Jansen et al., 2007 ; Doorduin et al., 2011 ). Amid the emerg- chloroplast genomes are published in GenBank without preference ing literature in this area is a hypothesis that the small single copy for the orientation of the SSC region, leading to apparent variation (SSC) region is a “hotspot” for inversion events (sensu Liu et al., in the orientation of the SSC region among individuals that is actu- 2013 ) because diff erent orientations of the region have been re- ally due to chloroplast heteroplasmy within individuals ( Wolfe and ported in relatively high frequencies among closely related taxa Randle, 2004 ), as originally described by Palmer (1983) . For exam- ( Liu et al., 2013 ; Walker et al., 2014 ). We would like to draw atten- ple, two sequences of Lactuca sativa that have been independently tion to a study by Palmer (1983) that bears heavily on this discus- published (NC_007578 and DQ_383816) were entered with diff er- sion, yet has been overlooked by several authors of publications ent orientations of the SSC region, which could be interpreted as investigating whole-chloroplast genome sequence order, including a major inversion existing within the species if the investigators are one study by some of the authors of this letter ( Walker et al., 2014 ). -
Silicification in the Microalgae
Silicification in the Microalgae Zoe V. Finkel 1 Silicifi cation in the Microalgae the cell wall, or Si may be bound to organic ligands associ- ated with the glycocalyx, or that Si may accumulate in peri- Silicon (Si) is the second most common element in the plasmic spaces associated with the cell wall (Baines et al. Earth’s crust (Williams 1981 ) and has been incorporated in 2012 ). In the case of fi eld populations of marine species from most of the biological kingdoms (Knoll 2003 ). Synechococcus , silicon to phosphorus ratios can approach In this review I focus on what is known about: Si accumula- values found in diatoms, and signifi cant cellular concentra- tion and the formation of siliceous structures in microalgae tions of Si have been confi rmed in some laboratory strains and some related non-photosynthetic groups, molecular and (Baines et al. 2012 ). The hypothesis that Si accumulates genetic mechanisms controlling silicifi cation, and the poten- within the periplasmic space of the outer cell wall is sup- tial costs and benefi ts associated with silicifi cation in the ported by the observation that a silicon layer forms within microalgae. This chapter uses the terminology recommended invaginations of the cell membrane in Bacillus cereus spores by Simpson and Volcani ( 1981 ): Si refers to the element and (Hirota et al. 2010 ). when the form of siliceous compound is unknown, silicic Signifi cant quantities of Si, likely opal, have been detected acid, Si(OH)4 , refers to the dominant unionized form of Si in in freshwater and marine green micro- and macro-algae (Fu aqueous solution at pH 7–8, and amorphous hydrated polym- et al.