Phylogeny and Morphology of a Chattonella (Raphidophyceae) Species from the Mediterranean Sea: What Is C

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Morphology of a Chattonella (Raphidophyceae) Species from the Mediterranean Sea: What Is C This article was downloaded by: [Stiftung Alfred Wegener Institute für Polar- und Meeresforschung ] On: 17 April 2013, At: 02:13 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK European Journal of Phycology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tejp20 Phylogeny and morphology of a Chattonella (Raphidophyceae) species from the Mediterranean Sea: what is C. subsalsa? Sascha Klöpper a , Uwe John a , Adriana Zingone b , Olga Mangoni c , Wiebe H.C.F. Kooistra b & Allan D. Cembella a a Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany b Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy c Department of Biological Sciences, University Federico II, Via Mezzocannone 8, 80138, Naples, Italy Version of record first published: 13 Mar 2013. To cite this article: Sascha Klöpper , Uwe John , Adriana Zingone , Olga Mangoni , Wiebe H.C.F. Kooistra & Allan D. Cembella (2013): Phylogeny and morphology of a Chattonella (Raphidophyceae) species from the Mediterranean Sea: what is C. subsalsa?, European Journal of Phycology, 48:1, 79-92 To link to this article: http://dx.doi.org/10.1080/09670262.2013.771412 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Eur. J. Phycol. (2013), 48(1):79–92 Phylogeny and morphology of a Chattonella (Raphidophyceae) species from the Mediterranean Sea: what is C. subsalsa? SASCHA KLÖPPER1, UWE JOHN1, ADRIANA ZINGONE2, OLGA MANGONI3, WIEBE H.C.F. KOOISTRA2 AND ALLAN D. CEMBELLA1 1Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 2Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy 3Department of Biological Sciences, University Federico II, Via Mezzocannone 8, 80138 Naples, Italy (Received 4 July 2012; revised 19 October 2012; accepted 29 October 2012) We analysed the molecular and morphological features of strains of Chattonella subsalsa isolated from the western Adriatic coast (Mediterranean Sea), with the aim of confirming their classification and elucidating their phylogenetic positions within the Raphidophyceae. We sequenced parts of the ribosomal operon, including the small subunit (SSU), the internal transcribed spacer region (ITS) and the large subunit (LSU) of the rDNA. Additionally, we analysed sequences of the chloroplast-encoded subunit psaA of Photosystem I (PSI) and rbcL, encoding the large subunit of the Rubisco gene. For three phylogenetic markers (LSU, ITS, rbcL), the sequences of the strains from the Adriatic Sea were identical and for two markers (SSU, psaA) only minor differences occurred. All strains were sister to, but well separated from, sequences from isolates in culture collections and from GenBank, thus far classified as belonging to C. subsalsa. Light and electron microscopy provided evidence for morphological differences between a strain of C. subsalsa (CCMP217) from the Gulf of Mexico and the isolates from the Adriatic Sea. Differences concerned the shape and arrangement of chloroplasts and the presence of mucocysts and other surface microstructures, which were only observed in isolates from the Adriatic Sea. This is the first evidence for two different taxa classified as C. subsalsa, which are clearly separated on the basis of several genetic markers and also show morphological differences. As compared with strains assigned to C. subsalsa from the NCMA (formerly CCMP) culture collection, the Adriatic strains more closely match the original species description. This would imply that strain CCMP217 and other genetically similar strains should be described under a new species name. Nevertheless, given the high morphological plasticity of Chattonella species, the definition of the true C. subsalsa must be decided based on detailed morphological and molecular analysis of more strains from other geographical areas. Key words: Chattonella subsalsa; compensatory base changes; harmful algae; Mediterranean Sea; molecular phylogeny; morphology; psaA; Raphidophyceae; rbcL; rDNA Introduction heterodynamic flagella emerging from a groove at the anterior end of the cell. A flagellum covered with The Raphidophyceae (described by Chadefaud, 1950, tripartite hairs is directed forward and pulls the cell, and emended by Silva, 1980) are classified within the while a flagellum with no hairs trails backwards. Cells stramenopiles, together with other prominent protists, of several species contain a variable number of ejecto- such as diatoms and chrysophytes. In a recent evolu- somes, which take the form of easily discharged Downloaded by [Stiftung Alfred Wegener Institute für Polar- und Meeresforschung ] at 02:13 17 April 2013 tionary tree of eukaryotes (Keeling et al., 2005), the mucocysts. Numerous chloroplasts are densely stramenopiles are placed with the alveolates (includ- packed in the periphery of the cell, just below the ing dinoflagellates and ciliates) within the chromal- surface, and vary in colour from green to yellow- veolates, as one of the five ‘supergroups’ identified in green to golden brown. Marine raphidophytes contain this system. Alternatively, six groups are proposed in chlorophyll a, c and/or c , and diadinoxanthin, fucox- the classification by Adl et al. (2005), who also con- 1 2 anthin and violaxanthin as the major carotenoids. sider with caution the grouping of stramenopiles with There are also pigment variants, which can be alveolates. restricted to particular genera; for example, Members of the class Raphidophyceae are unicel- Fibrocapsa and Haramonas species differ in the pre- lular, naked flagellates, which swim by means of two sence of fucoxanthinol in Fibrocapsa but 19-butanoy- loxyfucoxanthin in Haramonas (Bjørnland & Liaaen- Correspondence to: Uwe John. E-mail: [email protected] Jensen, 1989; Mostaert et al., 1998). ISSN 0967-0262 (print)/ISSN 1469-4433 (online)/13/010079-92 © 2013 British Phycological Society http://dx.doi.org/10.1080/09670262.2013.771412 S. Klöpper et al. 80 Eleven marine raphidophyte species have been particularly problematic. Chattonella marina, C. anti- described within six genera (Chattonella, Fibrocapsa, qua and C. ovata were first described based upon Haramonas, Heterosigma, Chlorinimonas and morphological characters visible by light microscopy, Viridilobus), the latest addition being Viridilobus mar- but they were subsequently shown to exhibit high inus (Demir-Hilton et al., 2012). Among these raphi- sequence similarities for different genetic markers dophytes, seven species have been associated with fish (Hirashita et al., 2000; Bowers et al., 2006; Hosoi- kills (Hallegraeff et al., 1998). There is no evidence of Tanabe et al., 2006; Demura et al., 2009). Based on harmful effects caused by the three known Haramonas the most recent molecular and morphological find- species or by Chlorinimonas sublosa, perhaps because ings, it has been suggested that differences among their sand-dwelling habit limits contact with fish these three taxa warrant them to be accorded at most shoals. Several harmful events have been caused by varietal status (Demura et al., 2009), the valid name species in the genus Chattonella, including the subject for the species being C. marina (Subrahmanyan) Y. of the present paper, C. subsalsa (Imai & Yamaguchi, Hara & Chihara , which comprises C. var. marina, var. 2012). The monotypic genus Heterosigma and the antiqua (Hada) Demura & Kawachi, and var. ovata genus Fibrocapsa, containing F. japonica and a (Y. Hara & Chihara) Demura & Kawachi. In the recently described new genotype from the phylogenetic trees presented in the publications men- Mediterranean (Klöpper et al., 2008), are also ichthyo- tioned above, C. subsalsa diverged early from the toxic. Harmful raphidophyte blooms are best documen- lineage with other Chattonella species, whereas C. ted for East Asian waters, where they heavily affect the subsalsa strains from geographically distinct locations extensive fishery and mariculture activities (Toriumi & showed no differences. Takano, 1973; Yoshimatsu, 1987). Nevertheless, raphi- Here we present an analysis to clarify the systema- dophyte blooms have also afflicted other coastal areas tics of C. subsalsa and isolates of Chattonella from the both recently and over the past few decades, including western Adriatic coast. We used five phylogenetic in the Mediterranean Sea (Hollande & Enjumet, 1957; markers: the small subunit (SSU), internal transcribed Tregouboff, 1962; Margalef, 1968; Mikhail, 2007). spacer (ITS) region and large subunit (LSU) of nuclear Tracking raphidophyte distributions in recent rDNA, and
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Centers of Endemism of Freshwater Protists Deviate from Pattern of Taxon Richness on a Continental Scale Jana L
    www.nature.com/scientificreports OPEN Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale Jana L. Olefeld1, Christina Bock1, Manfred Jensen1, Janina C. Vogt2, Guido Sieber1, Dirk Albach2 & Jens Boenigk1* Here, we analyzed patterns of taxon richness and endemism of freshwater protists in Europe. Even though the signifcance of physicochemical parameters but also of geographic constraints for protist distribution is documented, it remains unclear where regional areas of high protist diversity are located and whether areas of high taxon richness harbor a high proportion of endemics. Further, patterns may be universal for protists or deviate between taxonomic groups. Based on amplicon sequencing campaigns targeting the SSU and ITS region of the rDNA we address these patterns at two diferent levels of phylogenetic resolution. Our analyses demonstrate that protists have restricted geographical distribution areas. For many taxonomic groups the regions of high taxon richness deviate from those having a high proportion of putative endemics. In particular, the diversity of high mountain lakes as azonal habitats deviated from surrounding lowlands, i.e. many taxa were found exclusively in high mountain lakes and several putatively endemic taxa occurred in mountain regions like the Alps, the Pyrenees or the Massif Central. Beyond that, taxonomic groups showed a pronounced accumulation of putative endemics in distinct regions, e.g. Dinophyceae along the Baltic Sea coastline, and Chrysophyceae in Scandinavia. Many other groups did not have pronounced areas of increased endemism but geographically restricted taxa were found across Europe. Restricted distribution and endemism has been demonstrated for numerous protist taxa by now 1–4.
    [Show full text]
  • Chemical Signaling in Diatom-Parasite Interactions
    Friedrich-Schiller-Universität Jena Chemisch-Geowissenschaftliche Fakultät Max-Planck-Institut für chemische Ökologie Chemical signaling in diatom-parasite interactions Masterarbeit zur Erlangung des akademischen Grades Master of Science (M. Sc.) im Studiengang Chemische Biologie vorgelegt von Alina Hera geb. am 30.03.1993 in Kempten Erstgutachter: Prof. Dr. Georg Pohnert Zweitgutachter: Dr. rer. nat. Thomas Wichard Jena, 21. November 2019 Table of contents List of Abbreviations ................................................................................................................ III List of Figures .......................................................................................................................... IV List of Tables ............................................................................................................................. V 1. Introduction ............................................................................................................................ 1 2. Objectives of the Thesis ....................................................................................................... 11 3. Material and Methods ........................................................................................................... 12 3.1 Materials ......................................................................................................................... 12 3.2 Microbial strains and growth conditions ........................................................................ 12 3.3
    [Show full text]
  • Monitoreo De Microalgas De Ambientes Costeros De La Provincia De Buenos Aires Y Monitoreo De Toxinas En Moluscos Bivalvos
    PROYECTO MARCO MONITOREO DE MICROALGAS DE AMBIENTES COSTEROS DE LA PROVINCIA DE BUENOS AIRES Y MONITOREO DE TOXINAS EN MOLUSCOS BIVALVOS Directora Científica: Eugenia A. Sar1 Coordinación Técnica: Andrea Lavigne2, Ramiro Duffard2 Grupo responsable: Inés Sunesen1, Andrea Lavigne2 Grupo responsable de muestreo: Inés Sunesen1, Andrea Lavigne2 1 Departamento Científico Ficología, Facultad de Ciencias Naturales y Museo, UNLP 2 Ministerio de Asuntos Agrarios, Dirección Provincial de Pesca. MORTANDAD MASIVA DE SARACAS (BREVOORTIA AUREA) EN LA PROVINCIA DE BUENOS AIRES INTRODUCCIÓN A partir del 4 de marzo se produjo una varazón masiva de saracas, Brevoortia aurea, en el área costera de la Provincia de Buenos Aires entre Samborombón y Mar Azul, República Argentina y en el área costera de los Departamentos de Canelones y Montevideo, República Oriental del Uruguay. Tanto el Instituto Nacional de Investigaciones y Desarrollo Pesquero (INIDEP) asesora de la Subsecretaría de Pesca y Acuicultura de la Nación (SSPyA), del Consejo Federal Pesquero (CFP) y de la Cancillería Argentina, Argentina, como la Dirección Nacional de Recursos Acuáticos (DINARA) dependiente del Ministerio de Agricultura Ganadería y Pesca de Uruguay determinaron que la presunción de que el evento se hubiera producido por un descarte de la flota pesquera comercial podía ser desestimada. La estimación de biomasa de peces muertos depositados en la costa argentina fue de 3000 toneladas (informe del INIDEP del 19 de marzo), sin embargo varazones menores continúan aún y fueron observadas en Mar Azul durante la campaña del del 30-03-15 (cuyo análisis de muestras está en procesamiento). Para esas fechas algunos peces llegaban vivos a la costa con señales de asfixia, por lo que no puede presumirse que hubieran muerto en aguas próximas a las playas tiempo antes.
    [Show full text]
  • Fluorescence in Situ Hybridization Using 18S Rrna- Targeted Probe for Specific Detection of Thraustochytrids (Labyrinthulomycetes)
    Plankton Benthos Res 2(2): 91–97, 2007 Plankton & Benthos Research © The Plankton Society of Japan Fluorescence in situ hybridization using 18S rRNA- targeted probe for specific detection of thraustochytrids (Labyrinthulomycetes) YOSHITAKE TAKAO1, YUJI TOMARU1, KEIZO NAGASAKI1, YUKARI SASAKURA2, RINKA YOKOYAMA2 & DAISKE HONDA2* 1 National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2–17–5 Maruishi, Hatsukaichi, Hiroshima 739–0452, Japan 2 Department of Biology, Faculty of Science and Engineering, Konan University, 8–9–1 Okamoto, Higashinada, Kobe 658–8501, Japan Received 5 December 2006; Accepted 13 March 2007 Abstract: Thraustochytrids are cosmopolitan osmotrophic or heterotrophic microorganisms that play, especially in coastal ecosystems, important roles as decomposers and producers of polyunsaturated fatty acids (PUFA), and are also known to be pathogens of mollusks and seaweeds. However, because of shortcomings in the current methods for detec- tion and enumeration of thraustochytrids, very little information is available concerning their natural dynamics and eco- logical roles. In this study, we propose a new method for detecting thraustochytrids using a fluorescent 18S ribosomal RNA (rRNA)-targeted oligonucleotide probe (Probe ThrFL1). Detection of thraustochytrids by means of the fluores- cence in situ hybridization (FISH) technique with ThrFL1 was specific; the probe did not react with the other stra- menopile organisms or with the dinoflagellate that was tested. Because of the high specificity and intense reactivity, the FISH protocol is expected to be a strong tool for examining ecological features of thraustochytrids. Key words: Aurantiochytrium, Decomposer, FISH method, Schizochytrium, Thraustochytrium tance as decomposers (Raghukumar et al. 2001). In addi- Introduction tion, due to their high productivity of PUFAs such as do- Thraustochytrids are cosmopolitan apochlorotic stra- cosahexaenoic acid and docosapentaenoic acid (Nakahara menopile protists classified in the class Labyrinthu- et al.
    [Show full text]
  • First Findings of the Benthic Macroalgae Vaucheria Cf. Dichotoma (Xanthophyceae) and Punctaria Tenuissima (Phaeophyceae) in Estonian Coastal Waters
    Estonian Journal of Ecology, 2012, 61, 2, 135–147 doi: 10.3176/eco.2012.2.05 First findings of the benthic macroalgae Vaucheria cf. dichotoma (Xanthophyceae) and Punctaria tenuissima (Phaeophyceae) in Estonian coastal waters Priit Kersen Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia; [email protected] Received 19 December 2011, revised 7 March 2012, accepted 8 March 2012 Abstract. The north-eastern Baltic Sea is known to have relatively low species richness due to unfavourable salinity for many species. Here I report new records of two phytobenthic species for the Estonian marine flora: the yellow-green alga Vaucheria cf. dichotoma (L.) Martius and the epiphytic brown alga Punctaria tenuissima (C. Agardh) Greville. Besides, the former is the first observation of a species of the class Xanthophyceae in the Estonian coastal waters and is the first macrophytobenthic record of the class in the entire Gulf of Riga. The brown alga P. tenuissima was found for the first time in the entire Gulf of Finland. Morphological characteristics are shown for both species and possible reasons behind the new records are discussed. Key words: yellow-green algae, brown algae, NE Baltic Sea, phytobenthos, distribution, wrack flora, epiphytes. INTRODUCTION The Baltic Sea is the world’s largest brackish water body. It holds nearly 400 macroalgal species across the wide latitudinal salinity gradient, with a rapid decline in marine species richness from south to north (Middelboe et al., 1997; Larsen & Sand-Jensen, 2006). The lowest richness is predicted to be found at the horohalinicum salinity (5–8) and is reflected in relatively low macroalgal species in the NE Baltic Sea (Schubert et al., 2011).
    [Show full text]
  • Insights Into Alexandrium Minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis Through Comprehensive Transcriptome Survey
    biology Article Insights into Alexandrium minutum Nutrient Acquisition, Metabolism and Saxitoxin Biosynthesis through Comprehensive Transcriptome Survey Muhamad Afiq Akbar 1, Nurul Yuziana Mohd Yusof 2 , Fathul Karim Sahrani 2, Gires Usup 2, Asmat Ahmad 1, Syarul Nataqain Baharum 3 , Nor Azlan Nor Muhammad 3 and Hamidun Bunawan 3,* 1 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; muhdafi[email protected] (M.A.A.); [email protected] (A.A.) 2 Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (N.Y.M.Y.); [email protected] (F.K.S.); [email protected] (G.U.) 3 Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (S.N.B.); [email protected] (N.A.N.M.) * Correspondence: [email protected]; Tel.: +60-389-214-570 Simple Summary: Alexandrium minutum is one of the causing organisms for the occurrence of harmful algae bloom (HABs) in marine ecosystems. This species produces saxitoxin, one of the deadliest neurotoxins which can cause human mortality. However, molecular information such as genes and proteins catalog on this species is still lacking. Therefore, this study has successfully Citation: Akbar, M.A.; Yusof, N.Y.M.; characterized several new molecular mechanisms regarding A. minutum environmental adaptation Sahrani, F.K.; Usup, G.; Ahmad, A.; and saxitoxin biosynthesis. Ultimately, this study provides a valuable resource for facilitating future Baharum, S.N.; Muhammad, N.A.N.; dinoflagellates’ molecular response to environmental changes.
    [Show full text]
  • Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
    bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483).
    [Show full text]
  • 2013 Mystic, CT
    Table of Contents & Acknowledgements Welcome note ……………………………………………………………..….. 2 General program …………………………………………………………..….. 3-7 Poster presentation summary …………………………………..……………… 8-10 Oral abstracts (in order of presentation) …….………………………………… 11-25 Poster abstracts (numbered presentation boards) ……..……….……………… 26-38 Biographies of our distinguished speakers: James Carlton, Mark Edlund, Alan Steinman ……………. 39 Sincere appreciation The co-conveners acknowledge the generous support of our sponsors for this event, Woods Hole Sea Grant, Dominion Resources, Connecticut Sea Grant. Our vendors include Balogh Books (Scott Balogh), Environmental Proteomics (Jackie Zorz), Microtech Optical (Mark Specht), Reed Mariculture (Eric Henry), Saltwater Studio (Mary Jameson), and Willywaw (Ashley Van Etten). We thank our student volunteers: Shelby Rinehart, Meg McConville, Emily Bishop (U. Rhode Island) and Catharina Grubaugh, Sarah Whorley, and Xian Wang (Fordham U.) for their assistance in registration and meeting audio/visual support. We thank the award judges for the Wilce Graduate Oral Award Committee (Brian Wysor (Chair), Nic Blouin, Ursula Röse), Trainor Graduate Poster Award Committee (Karolina Fučíková (Chair), Charles O'Kelly, Michele Guidone, Ruth Schmitter) and President’s Undergraduate Presentation (oral & poster) Award Committee (Anita Klein (Chair), Julie Koester, Dion Durnford, Kyatt Dixon, Ken Hamel). We also thank the session moderators: Jessie Muhlin, Lorraine Janus, Anne-Marie Lizarralde, Dale Holen, Hilary McManus, and Amy Carlile. We are grateful to our invited speakers Jim Carlton, Mark Edlund, and Alan Steinman. We extend sincere gratitude to Bridgette Clarkston, who designed the 50th NEAS logo and Nic Blouin for modifying that logo for this meeting, and the staff at the Mystic Hilton, particularly Eileen Menard, for providing logistical support for this meeting. 1 Welcome to the 52nd Northeast Algal Symposium! We are delighted to welcome everyone to Mystic, Connecticut, and the Mystic Hilton.
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]