Descartes' Error: Emotion, Reason, and the Human Brain I Antonio R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Peanut Butter' Test Can Help Diagnose Alzheimer's Disease 9 October 2013
Researchers find that 'peanut butter' test can help diagnose Alzheimer's disease 9 October 2013 (Medical Xpress)—A dollop of peanut butter and a and held the ruler next to the open nostril while the ruler can be used to confirm a diagnosis of early patient breathed normally. The clinician then moved stage Alzheimer's disease, University of Florida the peanut butter up the ruler one centimeter at a Health researchers have found. time during the patient's exhale until the person could detect an odor. The distance was recorded Jennifer Stamps, a graduate student in the UF and the procedure repeated on the other nostril McKnight Brain Institute Center for Smell and after a 90-second delay. Taste, and her colleagues reported the findings of a small pilot study in the Journal of the The clinicians running the test did not know the Neurological Sciences. patients' diagnoses, which were not usually confirmed until weeks after the initial clinical testing. Stamps came up with the idea of using peanut butter to test for smell sensitivity while she was The scientists found that patients in the early working with Dr. Kenneth Heilman, the James E. stages of Alzheimer's disease had a dramatic Rooks distinguished professor of neurology and difference in detecting odor between the left and health psychology in the UF College of Medicine's right nostril—the left nostril was impaired and did not department of neurology. detect the smell until it was an average of 10 centimeters closer to the nose than the right nostril She noticed while shadowing in Heilman's clinic had made the detection in patients with Alzheimer's that patients were not tested for their sense of disease. -
Challenges and Techniques for Presurgical Brain Mapping with Functional MRI
Challenges and techniques for presurgical brain mapping with functional MRI The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Silva, Michael A., Alfred P. See, Walid I. Essayed, Alexandra J. Golby, and Yanmei Tie. 2017. “Challenges and techniques for presurgical brain mapping with functional MRI.” NeuroImage : Clinical 17 (1): 794-803. doi:10.1016/j.nicl.2017.12.008. http://dx.doi.org/10.1016/ j.nicl.2017.12.008. Published Version doi:10.1016/j.nicl.2017.12.008 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:34651769 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NeuroImage: Clinical 17 (2018) 794–803 Contents lists available at ScienceDirect NeuroImage: Clinical journal homepage: www.elsevier.com/locate/ynicl Challenges and techniques for presurgical brain mapping with functional T MRI ⁎ Michael A. Silvaa,b, Alfred P. Seea,b, Walid I. Essayeda,b, Alexandra J. Golbya,b,c, Yanmei Tiea,b, a Harvard Medical School, Boston, MA, USA b Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA c Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA ABSTRACT Functional magnetic resonance imaging (fMRI) is increasingly used for preoperative counseling and planning, and intraoperative guidance for tumor resection in the eloquent cortex. Although there have been improvements in image resolution and artifact correction, there are still limitations of this modality. -
Medical Term for Spine
Medical Term For Spine Is Urban encircled or Jacobethan when tosses some deflections Jacobinising alfresco? How Ethiopian is Fonz when undercuttingprobationary and locoedformulated ahorse, Stefan uncompounded recommence andsome laigh. fifers? Si rage his Saiva niche querulously or therewith after Reagan Centers for too extensively or destroy nerve roots exit the term for back pain Information on spinal stenosis for patients and caregivers what fear is signs and symptoms getting diagnosed treatment options and tips for. Medical Terminology Skeletal Root Words dummies. Depending on relieving pressure for medical terms literally means that put too much as well as pain? At birth involving either within this? Transverse sinus stenting is rotation or relax the space narrowing can cause narrowing is made worse in determining if a form for medical term results in alphabetical order for? Below this term for these terms and spine conditions, making a flat on depression can develop? Spine Glossary Dr Joshua Rovner. The term for hypophysectomies among pediatric neurooncological care professional medical terms, or weakness of. Understanding Lumbosacral Strain Fairview. Decompressive surgery often involves a laminectomy or erase process of enlarging your spinal canal to relieve pressure on the spinal cord or nerves by removing. Vertigo is a medical term that refers to the big of motion that help out of. It is prominent only rehabilitation system licensed as a military-term acute day hospital. Spinal Surgery Terminology Gwinnett Medical Center. Lumbago Is a non medical term usually lower lumbar back pain. A Glossary of Neurosurgical Terms Weill Cornell Brain and. Anatomy of the Spine Cedars-Sinai. Glossary of terms used in Neurosurgery brain thoracic spine. -
An Introduction to Anaesthesia for Neurosurgery
AN INTRODUCTION TO ANAESTHESIA FOR NEUROSURGERY Barbara Stanley, Norfolk and Norwich University Hospital, UK Email: [email protected] Introduction • Intracranial hypertension Anaesthesia for neurosurgical procedures requires • Associated conditions or trauma understanding of the normal anatomy and physiology of the central nervous system and the likely changes The procedure that occur in response to the presence of space • Short procedure time occupying lesions, trauma or infection. • Great surgical stimulation whilst shunt is In addition to balanced anaesthesia with smooth tunnelled induction and emergence, particular attention should The practicalities be paid to the maintenance of an adequate cerebral perfusion pressure (CPP), avoidance of intracranial • Supine position hypertension and the provision of optimal surgical • Invasive monitoring for burr hole conditions to avoid further progression of the pre- existing neurological insult. Postoperative care Aims of neuroanaesthesia • Rapid recovery and neurological assessment • To maintain an adequate cerebral perfusion Physiological Principals pressure (CPP) Cerebral perfusion pressure and the intracranial pressure/volume relationship • To maintain a stable intracranial pressure (ICP) Maintenance of adequate blood flow to the brain is • To create optimal surgical conditions of fundamental importance in neuroanaesthesia. • To ensure an adequately anaesthetised patient Cerebral blood flow (CBF) accounts for approximately who is not coughing or straining 15% of cardiac output, or 700ml/min. -
Neuropsychodynamic Psychiatry
Neuropsychodynamic Psychiatry Heinz Boeker Peter Hartwich Georg Northoff Editors 123 Neuropsychodynamic Psychiatry Heinz Boeker • Peter Hartwich Georg Northoff Editors Neuropsychodynamic Psychiatry Editors Heinz Boeker Peter Hartwich Psychiatric University Hospital Zurich Hospital of Psychiatry-Psychotherapy- Zurich Psychosomatic Switzerland General Hospital Frankfurt Teaching Hospital of the University Georg Northoff Frankfurt Mind, Brain Imaging, and Neuroethics Germany Institute of Mental Health Research University of Ottawa Ottawa ON, Canada ISBN 978-3-319-75111-5 ISBN 978-3-319-75112-2 (eBook) https://doi.org/10.1007/978-3-319-75112-2 Library of Congress Control Number: 2018948668 © Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
Persistent Neurobehavioral Problems Following Mild Traumatic Brain Injury
Archives of Clinical Neuropsychology 16 (2001) 561–570 Downloaded from https://academic.oup.com/acn/article/16/6/561/2043 by guest on 23 September 2021 Persistent neurobehavioral problems following mild traumatic brain injury Lawrence C. Hartlagea,*, Denise Durant-Wilsona, Peter C. Patcha,b aAugusta Neuropsychology Center, 4227 Evans to Locks Road, Evans, GA 30809, USA bUS Penitentiary, Atlanta, GA, USA Accepted 9 May 2000 Abstract Accumulating research documents typical rates in the range of 85% of mild traumatic brain injury (MTBI) showing prompt, complete resolution with 15% suffering from persistent neurobehavioral impairments. Studies of neurobehavioral symptoms of MTBI have not separated these two populations, resulting in either inconclusive or contradictory conclusions concerning the relationship of MTBI with residual behavioral problems. This project studied 70 MTBI patients with persistent neurobehavioral problems at two time intervals post-injury to determine whether there are consistent neurobehavioral patterns considered to be sequelae of MTBI. A matched group of 40 normal subjects provided control data. While most behavioral problems showed improvement, 21% tended to show significant behavioral impairment compared to controls at 12 or more months post-injury. Neurochemical bases of neuronal degeneration may account for some of the behavioral deterioration following MTBI. D 2001 National Academy of Neuropsychology. Published by Elsevier Science Ltd. Keywords: Persistent neurobehavioral problems; Brain; MTBI The scientific -
Psychiatry and Neurology
ensic For Ps f yc o h l a o l n o r g u y o J ISSN: 2475-319X Journal of Forensic Psychology Editorial Psychiatry and Neurology Carlos Roberto* Department of Psychology, La Sierra University, California, USA DESCRIPTION between neurological and psychiatric disorders. for instance , it's documented that a lot of patients with paralysis agitans and Psychiatry is that the medicine dedicated to the diagnosis, stroke manifest depression and, in some, dementia. Is there a prevention, and treatment of mental disorders. These include substantive difference between a toxic psychosis (psychiatry) and various maladaptation’s associated with mood, behavior, a metabolic encephalopathy with delirium (neurology) we've cognition, and perceptions. See glossary of psychiatry. known of those examples for several years? Never and dramatic evidence has come largely through functional resonance imaging Neurology is that the branch of drugs concerned with the study and positron emission tomography. Obsessive-compulsive and treatment of disorders of the system nervosum. The system a disorder is characterized by recurrent, unwanted, intrusive ideas, nervosum may be a complex, sophisticated system that regulates images, or impulses that appear silly, weird, nasty, or horrible and coordinates body activities. Its two major divisions: Central nervous system: the brain and medulla spinalis. (obsessions) and by urges to hold out an act (compulsions) which will lessen the discomfort thanks to the obsessions. Increasing the amount of brain serotonin with selective reuptake inhibitors DIFFERENCE BETWEEN PSYCHITARY may control the symptoms and signs of this disorder. Evidence AND NEUROLOGY of a genetic basis in some patients, structural abnormalities of the brain on resonance imaging in others, and abnormal brain For quite 2000 years within the West, neurology and psychiatry function on functional resonance imaging and positron were thought to be a part of one, unified branch of drugs, which emission tomography collectively suggest that schizophrenia may was often designated neuropsychiatry. -
Atlanta Dist Career
INS Distinguished Career Award Atlanta Alexandre Castro-Caldas Alexandre Castro-Caldas has had a prolific scientific career, and has made important contributions in several areas of investigation in the areas of Behavioral Neurology and Neuropsychology including Parkinson ’s Disease, illiteracy, and the effects of dental amalgam. He has published nearly 200 papers and book chapters. He has had a major leadership role within INS as well as other national and international organizations. Dr. Castro-Caldas was a member of the INS Board of Governors from 1984-1986; organizer of the 1983 meeting in Lisbon and the 1993 mid-year meeting in Madeira, and was elected president of INS from 2001-2002. Dr. Castro-Caldas has also been highly influential in the field of Behavioral Neurology in Portugal and internationally. He has held positions of leadership in numerous organizations including: Director of the Institute of Health Sciences of Portuguese Catholic University; President of the College of Neurology (Ordem dos Médicos) (1994-97); Member of the International Committee of the International Neuropsychiatric Association; Member of Advisory Board of Portuguese Society of Cognitive Sciences; Advisory Board member The European Graduate School of Child Neuropsychology; President of the Portuguese Society of Neurology (1989-92); board member of the Portuguese Association of Psychology; Board member of the International Association for the Study of Traumatic Brain Injury; and the advisory board for the European Association of Neuropharmacology. Martha Denckla Gerald Goldstein Kenneth Heilman In 1938, parents Samuel and Rosalind Heilman and big brother Fred, welcomed baby boy Kenneth Martin Heilman at what is now Maimonides Hospital. -
Apraxia: the Neuropsychology of Action
Apraxia: The Neuropsychology of Action edited by Leslie j. Gonzalez Rothi and Kenneth M. Heilman Department of Veterans Affairs Medical Center and Department of Neurology, University of Florida, Ca inesville, FL 32610, USA 'P ~~~~~~~;?c9XP Press LONDON AND NEW YORK First published 1997 by Psychology Press Published 2014 by Psychology Press 27 Church Road, Hove, East Sussex, BN3 2FA and by Psychology Press 711 Third Avenue, New York, NY 10017 Psychology Press is an imprint ofthe Taylor & Francis Group, an informa business © 1997 by Psychology Press Ltd All rights reserved. No part ofthis book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 978-0-86377-743-1 (pbk) ISBN 978-0-863-77743-1 (hbk) ISSN 0967-9944 Coverdesign by Joyce Chester TypesetinTimes by Gilbert Composing Services, Leighton Buzzard, Bedfordshire Publisher's Note The publisher has gone to great lengths to ensure the quality of this reprint but points out that some imperfections in the original may be apparent. Contents Chapter I. Introduction to Limb Apraxia 1 Leslie J. Gonzalez Rothi and Kenneth M. Heilman Chapter 2. Limb Apraxia: A Look Back 7 Kenneth M. -
Clinical Neurophysiology (CNP) Section Resident Core Curriculum
American Academy of Neurology Clinical Neurophysiology (CNP) Section Resident Core Curriculum 9/7/01 Definition of the Subspecialty of Clinical Neurophysiology The subspecialty of Clinical Neurophysiology involves the assessment of function of the central and peripheral nervous system for the purpose of diagnosing and treatment of neurologic disorders. The CNP procedures commonly used include EEG, EMG, evoked potentials, polysomnography, epilepsy monitoring, intraoperative monitoring, evaluation of movement disorders, and autonomic nervous system testing. The use of CNP procedures requires an understanding of neurophysiology, clinical neurology, and the findings that can occur in various neurologic disorders. The following are the recommended CORE curriculum for residents re CNP. Basic Neurophysiology: Membrane properties of nerve and muscle potentials (resting, action, synaptic, generator), ion channels, synaptic transmission, physiologic basis of EEG, EMG, evoked potentials, sleep mechanisms, autonomic disorders, epilepsy, neuromuscular diseases, and movement disorders Anatomic Substrates of EEG, EMG, evoked potentials, sleep and autonomic activity Indications: Know the indications for and the interpretation of the various CNP tests in the context of the clinical problem. EEG: 1. Recognize normal EEG patterns of infants, children, and adults 2. Recognize abnormal EEG patterns and their clinical significance, including epileptiform patterns, coma patterns, periodic patterns, and the EEG patterns seen with various focal and diffuse neurologic and systemic disorders. 3. Know the EEG criteria for recording in suspected brain death EMG: 1. Know the normal parameters of nerve conduction studies and needle exam of infants, children, and adults 2. Know the abnormal patterns of nerve conduction studies and needle exam and the clinical correlates with various diseases that affect the neuromuscular and peripheral nervous system Evoked Potential Studies 1. -
Phineas Gage, Neuroscience's Most Famous Patient
SCIENCE THE STATE OF THE UNIVERSE. MAY 6 2014 11:32 PM Phineas Gage, Neuroscience’s Most Famous Patient Each generation revises his myth. Here’s the true story. By Sam Kean 1 From a virtuous foreman to a sociopathic drifter n Sept. 13, 1848, at around 4:30 p.m., the time of day when the mind might start wandering, a O railroad foreman named Phineas Gage filled a drill hole with gunpowder and turned his head to check on his men. It was the last normal moment of his life. Other victims in the annals of medicine are almost always referred to by initials or pseudonyms. Not Gage: His is the most famous name in neuroscience. How ironic, then, that we know so little else about the man—and that much of what we think we know, especially about his life unraveling after his accident, is probably bunk. Gage's exhumed skull and tamping iron, 1870. Image via J.B.S. Jackson/A Descriptive Catalog of the Warren Anatomical Museum The Rutland and Burlington Railroad had hired Gage’s crew that fall to clear away some tough black rock near Cavendish, Vermont, and it considered Gage the best foreman around. Among other tasks, a foreman sprinkled gunpowder into blasting holes, and then tamped the powder down, gently, with an iron rod. This completed, an assistant poured in sand or clay, which got tamped down hard to confine the bang to a tiny space. Gage had specially commissioned his tamping iron from a blacksmith. Sleek like a javelin, it weighed 13¼ pounds and stretched 3 feet 7 inches long. -
Neuropathology / Neurosurgery
Interinstitutional and interstate teleneuropathology Clayton A. Wiley, MD/PhD [email protected] Disclosures • None – Employee of UPMC and U Pittsburgh – Clinical evaluation board for OMNYX • But I remain receptive if anyone has any great ideas ….. History • 1973: Washington, DC pathologists diagnosed lymphosarcoma/leukemia via satellite in a patient on a ship docked in Brazil • 1986: “telepathology” coined • 1993: first teleneuropathology paper (Becker et al.) – High error rate (27%) – Static imaging system • 2001: Szymas et al. – Robotic dynamic system – 83 paraffin-embedded neurosurgical cases – 95% accuracy Telepathology systems • Static versus dynamic – Static images dependent on proper selection of diagnostic fields • Dynamic: Robotic versus non-robotic – Non-robotic requires two pathologists, one at each end • Whole Slide Imaging 2001 • Dynamic non-robotic for IO consults • Teleconferencing between 2 pathologists at 2 hospitals 18 blocks apart • Problems – Inadequate image quality (NTSC 640 X 480) – No remote control – Required 2 pathologists – Frequent technical glitches, also required presence of IT techs to assist 2002: Nikon DN100 • Static, non-robotic • High-resolution imaging (1280 X 960) • Broadcast every 2 seconds • No remote control • No whole-slide image available 2003: Nikon Coolscope • Dynamic-robotic system • High resolution • Full remote control by consulting neuropathologist • Trained PA to make specimens Our Analysis • Compared error and deferral rates between conventional and telepathology IO cases over 5 years 2002-2006