Made Even Better

Total Page:16

File Type:pdf, Size:1020Kb

Made Even Better MADE EVEN BETTER Niagara’s sawmill in Invercargill, New Zealand spans more than 20 hectares, the site employs over 100 staff at the sawmill, office, kilns, treatment and finger jointing plants. Niagara’s Ashburton plant uses timber from the sawmill to manufacture a superior range of building and finishing products. Ashburton • Niagara’s sawmill and remanufacture plant is ideally located at Kennington, seven kilometres north of New Zealand’s southern-most city, Invercargill. Invercargill • Niagara Truss & Frame and Parklands Firewood & Landscaping Supplies are both located in Invercargill. 4 History 5 Timber source 6 Sawmilling 8 Kiln drying 10 Quality control 12 Remanufacturing 14 Ashburton plant 16 Timber grades 17 Bark, chip, sawdust and briquettes 18 Niagara Truss & Frame 19 Parklands Firewood & Landscaping Mid 50’s forklift at the original Niagara sawmill Carting timber - early 40’s Generations of timber Originally established in the small Southland country settlement of Niagara, the company, which has been wholly owned by the Richardson family since 1954, has graduated from three sawmills to its present site at Kennington on the outskirts of Invercargill. Providing quality timber is their lifeblood and they have expertise, experience and a belief that their product, like the tall forest, will stand the test of time. Ensuring they utilise each tree to maximum capacity means they provide a full spectrum of products, from milled timber through to precision building products and everything in between, including bark, chip, sawdust, firewood and briquettes. Niagara has been sawmilling since 1935 and has a proud history of responsible forestry and timber processing. The current Kennington site was built in 1966 4 5 Mid 50’s forklift at the original Niagara sawmill Carting timber - early 40’s Ross and Ken Richardson Niagara selects and processes only the best radiata pine trees McNeill’s truck loading with logs set for delivery to the sawmill Perfect pine It is well known that trees absorb carbon dioxide Niagara concentrates solely on radiata pine, and release oxygen as they grow. which flourishes in the southern climate. All material is sourced from plantations in This reduces the harmful CO2 emissions that Southland and areas of neighbouring Otago. The white timber of radiata pine has a contribute to global warming. multitude of uses and is highly sought after Importantly, when the trees are harvested and on the global market. processed the carbon is sequestered in the wood. The Southland region of New Zealand lends itself perfectly to the growth of quality radiata This means the more wood you use the more you pine with an abundance of suitable plantation sites. Consistent rainfall, cool climatic are helping to produce a healthier, more energy- conditions and ample sunlight, particularly during spring and summer, result in an ideal efficient, carbon neutral environment. growing environment. Niagara sources its material from a variety of locations and while it owns some of its own plantations, the company also purchases logs from privately owned blocks and through the tender system. Niagara was among the first sawmills in New Zealand to be certified as a supplier of FSC (Forest Stewardship Council) timber products. This is available to customers on request. Printed on chlorine free, 100% recycled FSC paper using environmentally friendly inks. 4 5 Logs enter sawmill Headrig operator scans the logs so optimum conversion can be achieved Flitches on infeed of horizontal saw Sawmilling A great deal of effort and experience goes into producing a quality product and with over 75 years entrenched in the sawmilling business Niagara is at the forefront, a world-class leader in its field. Producing approximately 120,000/m3 of sawn timber from its Kennington sawmill each year Niagara understands the importance of quality and accuracy to its worldwide customer base. This is why during sawmilling each piece is individually cared for using a wide range of modern technologies allowing Niagara to produce each piece of timber to its customers’ specific requirements. Producing approximately 120,000/m3 of From the start of the sawmilling process sawn timber from its Kennington sawmill cutting edge technology scans each log for maximum sawn timber recovery. This precision scanning also ensures accuracy, each year Niagara understands the which is vital as each piece continues its journey throughout the sawmill. importance of quality and accuracy to its Niagara’s horizontal saw takes care of the next stage worldwide customer base. of production, followed by a six saw automated edger system, which scans each piece to ensure the optimum width recovery is achieved. 6 7 Operator scanning flitches for optimum conversion Outfeed of edger after optimisation Niagara knows its customers demand accuracy from its products, which is why Niagara has recently installed an inline trimmer to ensure that each and every piece leaving the sawmill is end docked to ensure an accurate length, as well as being scanned for width and thickness. After the trimmer each board is then separated based on size and grade into Niagara’s binsorter, which allocates just the right amount of pieces per bin to ensure the finished packs are the perfect size for effective and consistent kiln drying. Once each bin is full an automatic stacker stacks each pack, precisely placing fillets on every layer to ensure each pack is optimised for the important kiln drying process that follows. All Niagara staff are highly trained and continuous upskilling of all staff is a vital ingredient to Niagara’s continuous push for excellence and dedication to the timber industry. 6 7 Woodwaste boiler State-of-the-art computer technology Kiln drying Niagara understands the importance of accurate moisture content and kiln drying to its worldwide customer base, which is why Niagara’s state-of- the-art kiln complex is fully computerised using the latest technology. Niagara’s kiln complex includes seven medium temperature kilns - three Windsor Batch Kilns and four Mahild Continuous Kilns (CFK). With a drying capacity of over 120,000m3 per annum Niagara can ensure all its customers’ requirements are fulfilled on time and to the highest quality. Recycled sawdust fuels the boiler generating heat for the kilns. 8 9 Kiln dried timber exiting a kiln Continual moisture checks are made throughout the process By using the most modern kiln drying computer-based technology Niagara can ensure that each and every piece is individually cared for and monitored throughout the drying process. Niagara’s kiln staff are trained in the best drying practices and each step is precisely carried out. Careful building of each kiln charge allows optimum air flow right through. A real time system shows the exact stage of each charge and how it is progressing allowing the operators to make decisions based on each kiln individually at any time of the drying process. Because Niagara’s complex is manned around the clock each charge is only left in the kilns for the precise amount of time. Hot checks are completed on each charge before releasing timber to the next production stage. Niagara’s continuous drying kilns operate around the clock. 8 9 Each board is graded and checked for moisture A finished pack being lowered for stacking Pack being wrapped before containerisation Sling sorter/quality control Niagara’s responsibility to quality doesn’t just stop after the drying process, it continues into the sling sorter/quality control department where each and every board is tested for moisture along the entire length. Niagara’s sling sorter has the capacity to process over 600m3 of kiln dried sawn timber per shift in order to meet customer demand in the most efficient way and ensuring accurate scheduling and on time delivery. Each pack from the kilns is de-filleted and run across an inline moisture meter to check for any defects in drying before reaching the grading station. Each piece is then individually graded depending on customer requirements and automatically allocated to one of 30 slings along the line. Each sling is automatically tallied for length and number of pieces to ensure the customer gets the right volume for every pack they order. Packs are then automatically stacked and either wrapped for the export market or allocated to Niagara’s remanufacturing plant for further processing. Because Niagara individually checks each piece for both moisture and grade specification customers are rest assured that product requirements will always be met. 10 11 Each board is graded and checked for moisture A finished pack being lowered for stacking Pack being wrapped before containerisation Niagara’s export-ready products are shipped out from nearby ports at Bluff, Port Chalmers and Lyttelton to clients in the United States, South East Asia and Australia, as well as those based in New Zealand. 10 11 Stetson-Ross infeed Optimising control station Rip recovery Remanufacturing The Niagara remanufacturing plant uses FSC certified radiata pine sourced from their sawmill to produce finger jointed blanks. These are further processed into engineered timber products of superior quality and appearance for local and overseas customers. Rough sawn kiln dried timber coming into the remanufacturing plant is machined through a Stetson- Ross planer to give a smooth uniform finish ready for defecting and finger jointing. The timber is constantly checked to ensure that only the product that meets strict quality specifications is used. An inline moisture meter is one of these quality checks, ensuring that timber outside the required moisture range is identified and removed before further Niagara’s remanufacturing plant uses processing occurs. the latest technology. Timber is scanned Using modern technology the timber is then scanned through a Woodeye at up to 220 metres per minute. through a Woodeye at up to 220 metres The Woodeye takes a snapshot of the entire length of each board, identifying the different grades of timber per minute taking a snapshot of the entire contained within the piece and selecting only the best length of each board and identifying the material for finger jointing.
Recommended publications
  • Developing a Wood Pellet/ Densified Biomass Industry in Washington State: Opportunities and Challenges
    Developing a Wood Pellet/ Densified Biomass Industry in Washington State: Opportunities and Challenges A Report to the Washington State Legislature December 2012 Page 1 Densified biomass: Part of Washington’s energy solution The Washington State University (WSU) Energy Program was directed by the Washington State Legislature [3ESHB-2127, section 603 (8)] to conduct a study of densified biomass as a renew- able fuel for heating homes, businesses and other facilities in our state. This report to Governor Chris Gregoire and the Legislature presents a summary of the WSU Energy Program’s densified biomass study findings. What is densified biomass? Washington’s pellet mill industry has shrunk by Raw biomass materials, such as forest slash and one-third in recent years, primarily due to the construction waste, are irregular in shape, low facilities’ debt loads. in energy density, greatly affected by moisture, • In 2009, three mills – located in Omak, and can be difficult to transport. Shelton and Tacoma – had a combined capacity of 180,000 tons per year. Another Biomass densification solves these problems by mill in Skagit County was in the permitting compressing sawdust and chipped wood to process, but never opened. create solid biofuel pellets that provide consis- • By 2012, the state had only two operating tent quality, low moisture content, high energy mills – Olympus Pellets in Shelton and density and homogenous size and shape. Manke in Tacoma – with a combined Densification increases the energy density of capacity of 160,000 tons per year. biomass by approximately 10 to 15 percent, so more heat is produced per unit of pellets This report provides insights to reinvigorate burned than if the same amount of raw wood the densified biomass/wood pellet industry in was burned.
    [Show full text]
  • Cross Laminated Timber As Sustainable Construction Technology for the Future
    Tommaso Scalet Cross Laminated Timber as Sustainable Construction Technology for the Future Helsinki Metropolia University of Applied Sciences Degree in Civil Engineering Degree Programme of Sustainable Building Engineering Thesis 18 December 2015 Abstract Author Tommaso Scalet Title Cross Laminated Timber as Sustainable Construction Technology for the Future Number of Pages 34 pages Date 18 December 2015 Degree Bachelor in Engineering Degree Programme Civil Engineering Specialisation option Sustainable Building Engineering Instructors Eric Pollock, Senior Lecturer Albino Angeli, General Manager of Xlam Dolomiti S.r.l. The purpose of this final year project was to investigate and analyse the sustainability per- formances of cross laminated timber (CLT) construction technology. First the availability of the raw material (timber) was studied comparing the systems of Northern Italy and Finland. Second, the manufacturing process and application of CLT in construction was compared to other traditional construction systems. A central part of the study was the environmental impact of the adhesive used in the production, with a special focus on the emissions in the production, application and disposal phases. Further studies were conducted on how to treat CLT waste material and how to improve and optimize the manufacturing process to reach a complete sustainability of the product. For the Bachelor‟s thesis, the disposal of the timber and wood adhesive in CLT were stud- ied. With the support of the collected data, it was possible to propose four technical solu- tions to the problem of the disposal of waste come from the CLT. It was concluded that CLT can be advertised as a completely sustainable material for construction.
    [Show full text]
  • Wood Pellets Thesis
    The Feasibility of a Wood Pellet Plant Using Alternate Sources of Wood Fibre Garrett Blom WOOD 493 A Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Wood Products Processing In The Faculty of Forestry April 21st 2009 Abstract: This Thesis will evaluate the feasibility of building and operating a pellet plant in interior British Columbia. This thesis will examine the economic demand for wood pellets in different regions of the world. It will also identify the current Canadian supply and production of wood pellets. The thesis considers the capital costs associated with the building of a pellet plant as well as the machine capital costs. The variable costs associated with a pellet plant are examined in this thesis, with an emphasis on the costs associated with obtaining different wood fibre sources. Transportation and drying costs are also taken into consideration with regards to variable costs. In the analysis of data five different scenarios are calculated to identify the feasibility of using different fibre sources to operate a pellet plant. Recommendations based from these scenarios demonstrate the feasibility of operating and building a pellet plant in interior British Columbia. Page | ii Table of Contents: Title Page i Letter of Transmittal ii Abstract iii Table of Contents iv List of Tables vi List of Figures vii 1 INTRODUCTION 1 1.0 Problem Statement 1 1.1 Biomass Energy 1 1.2 Environmental Benefits 1 2 THE PRODUCTION OF WOOD PELLETS 3 2.1 Environmental Fibre Options 3 2.2 Energy
    [Show full text]
  • Biomass Energy in Pennsylvania: Implications for Air Quality, Carbon Emissions, and Forests
    RESEARCH REPORT Biomass Energy in Pennsylvania: Implications for Air Quality, Carbon Emissions, and Forests Prepared for: Prepared by: December 2012 The Heinz Partnership for Endowments Public Integrity Pittsburgh, PA by Mary S. Booth, PhD The Biomass Energy in Pennsylvania study was conducted by Mary S. Booth, PhD, of the Partnership for TABLE OF CONTENTS Policy Integrity. It was funded by the Heinz 4 Executive Summary Endowments. 4 Central findings 8 Recommendations 10 Chapter 1: Biomass Energy — The National Context 11 The emerging biomass power industry 11 Cumulative demand for “energy wood” nationally 14 Chapter 2: Carbon Emissions from Biomass Power 15 The Manomet Study 18 Chapter 3: Pollutant Emissions from Biomass Combustion 19 Particulate matter 20 Particulate matter emissions from small boilers 20 Use of pellets to reduce emissions and the carbon dilemma 22 Particulate matter controls for large boilers 22 Controls for other pollutants 24 Chapter 4: Biomass Combustion Impacts on Human Health 25 Special characteristics of biomass emissions 26 Diesel emissions from biomass harvesting and transport 27 Chapter 5: Policy Drivers for Biomass Power in Pennsylvania 28 Bioenergy in Pennsylvania’s Alternative Energy Portfolio Standard 29 Pennsylvania’s Climate Action Plan 30 Blue Ribbon Task Force on the low-use wood resource 31 Financial incentives for biomass and pellet facilities 31 Pennsylvania’s “Fuels for Schools and Beyond” program 32 Penn State University’s Biomass Energy Center 33 Chapter 6: Biomass Supply and Harvesting in Pennsylvania
    [Show full text]
  • Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood
    sustainability Article Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood Hamid Rezaei 1,* , Fahimeh Yazdan Panah 1, C. Jim Lim 1 and Shahab Sokhansanj 1,2 1 Chemical and Biological Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; [email protected] (F.Y.P.); [email protected] (C.J.L.); [email protected] (S.S.) 2 Chemical and Biological Engineering Department, University of Saskatchewan, Saskatoon, SK 3B48, Canada * Correspondence: [email protected] Received: 26 May 2020; Accepted: 4 June 2020; Published: 6 June 2020 Abstract: The combustible fraction of municipal solid waste (MSW) is called refuse-derived fuel (RDF). RDF is a blend of heterogeneous materials and thus its handling is challenging. Pelletization is an efficient treatment to minimize the heterogeneity. In this research, typical RDF compositions were prepared by mixing several mass fractions of paper, plastic, household organic and wood. The collected compositions were ground, wetted to 20% moisture content (wet basis) and pelletized. Increasing the plastic content from 20% to 40% reduced the pelletization energy but increased the pellet’s calorific value. Pellets with higher plastic content generated more dust when exposed to shaking. Making durable pellets with 40% plastic content needed an increase in die temperature from 80 ◦C to 100 ◦C. Increasing the paper content from 30% to 50% increased the durability but consumed higher energy to form pellets. Paper particles increased the friction between pellet’s surface and die wall as was evident from expulsion energy. Force versus displacement curve for material compression revealed that the RDF compositions have rigid material characteristics.
    [Show full text]
  • An Analysis of the Effects of a 30% Credit on the Expected Demand For
    FutureMetrics LLC 8 Airport Road Bethel, ME 04217, USA An Analysis of the Effects of a 30% Credit on the Expected Demand for High Efficiency Wood Pellet, Wood Chip, and Agricultural Residue Fueled Boilers: The Cost/Benefit to the Treasury, and the Jobs Created The demand estimates in this analysis are based on the 30% tax credit on qualifying private sector high-efficiency biomass fueled boilers that are used to replace heating oil fueled boilers as proposed in Senate Bill 1007: Biomass Thermal Utilization Act of 2013 Prepared by Dr. William Strauss, Chief Economist, Biomass Thermal Energy Council Executive Summary A program of tax credits for high efficiency boilers that use biomass fuels such as wood pellets, wood chips, and agricultural residues will have very significant positive economic effects. The cost of the tax credits will be greatly outweighed by the increased tax revenues. This paper describes how adding a tax credit for high efficiency biomass boilers to the existing tax code1 will benefit the economy, create jobs, and will generate significantly more tax revenue than the cost of the credits. The program will also help increase the US’s energy independence and reduce its need for foreign oil. The table below summarizes the estimated tax effects of the program. Year 1 Year 2 Year 3 Year 4 Cost of Tax Credits to the Treasury $0 $32,610,000 $41,778,000 $56,167,000 New Tax Revenues to the Treasury $0 $29,909,000 $55,562,000 $99,712,000 Net Benefit (Cost) to the Treasury $0 ($2,701,000) $13,784,000 $43,545,000 (The tax impacts are assumed to accrue in the year following each of the tax credit years.) 1See the proposed bill at http://www.govtrack.us/congress/bills/113/s1007/text and a summary at the end of this report.
    [Show full text]
  • Woody Biomass Feedstock Yard Business Development Guide a Resource and Business Guide to Developing a Woody Biomass Collection Yard
    Woody Biomass Feedstock Yard Business Development Guide A resource and business guide to developing a woody biomass collection yard Prepared by: The Federal Woody Biomass Utilization Working Group Chartered under the Biomass Research and Development Board Abstract This Guide provides an overview of the challenges and opportunities to establish a woody biomass feedstock yard in the United States. It includes information on biomass sourcing; facility site selection and equipment; biomass sort yards; biomass collection, concentration, and distribution; biomass handling, sorting, and economic considerations; business planning; marketing and distribution; financial feasibility analysis; and sources of technical assistance and funding. Additional references and resources are included. KEYWORDS: woody biomass; biomass feedstock yard; biomass sort yard; biomass collection yard; biomass concentration yard; biomass distribution yard; biomass handling, sorting, storage, and inventory; weight scaling. COVER PHOTOGRAPHS: (Upper Left) Wheelabrator biomass yard, Anderson, CA. This large feedstock yard supports a 54 MW power plant in northern Sacramento Valley. Forest residues from a variety of forest thinning operations create a colorful mix of feedstocks; mixing of the fuel reduces any inconsistencies in quality and moisture content. Date unknown. Source: Steve Jolley, former Wheelabrator employee. (Upper Right) Small mill residue loading station. Source USDA Forest Service. (Lower Left) Screening chipped woody biomass. Source USDA Forest Service. (Lower Right) Conveyor belt system and chip pile at Mt. Lassen Power plant, Westwood, CA. The truck driver operated hydraulic chip truck unloaders are at the far left of the photo. September 18, 2002. John Stewart. AVAILABILITY: This publication is also available online at: http://www.forestsandrangelands.gov/Woody_Biomass/documents/feedstock_yard_guide.pdf DISCLAIMERS: The use of trade or firm names is for information only and does not imply endorsement by the Federal Woody Biomass Utilization Group of any product or service.
    [Show full text]
  • Woodcreek 4-In-1 Pellet Grill OWNER’S MANUAL OPERATING INSTRUC TIONS
    Woodcreek 4-in-1 Pellet Grill OWNER’S MANUAL OPERATING INSTRUC TIONS SAVE THIS MANUAL FOR FUTURE REFERENCE Model SMK0036AS / SMK0036ASO WARNING NOTICE TO INSTALLER: PLEASE READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS PELLET FUEL-BURNING APPLIANCE. LEAVE THESE INSTRUCTIONS FAILURE TO FOLLOW THESE INSTRUCTIONS COULD RESULT IN WITH THE GRILL OWNER PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH. CONTACT LOCAL BUILDING OR FIRE OFFICIALS ABOUT RESTRICTIONS FOR FUTURE REFERENCE . AND INSTALLATION INSPECTION REQUIREMENTS IN YOUR AREA. SAVE THESE INSTRUCTIONS. IMPORTANT SAFETY WARNINGS WE WANT YOU TO ASSEMBLE AND USE YOUR GRILL AS SAFELY AS POSSIBLE. THE PURPOSE OF THIS SAFETY ALERT SYMBOL IS TO ATTRACT YOUR ATTENTION TO POSSIBLE HAZARDS AS YOU ASSEMBLE AND USE YOUR GRILL & SMOKER. WHEN YOU SEE THE SAFETY ALERT SYMBOL, PAY CLOSE ATTENTION TO THE INFORMATION WHICH FOLLOWS! READ ALL SAFETY WARNINGS AND INSTRUCTIONS CAREFULLY BEFORE ASSEMBLING AND OPERATING YOUR GRILL & SMOKER. WARNING Do NOT use in humid or wet conditions WARNING 1. Improper installation, adjustment, service or maintenance can cause injury or property damage. 2. Read all instructions and guidelines carefully and thoroughly before installation, use or service. 3. Failure to follow these instructions could result in fi re or electrical shock. DANGER NOT for use in or on boats or recreation vehicles. DANGER 1. Do not store or use gasoline, liquid propane or any other fl ammable vapors or liquids in the vicinity of this appliance. 1 TABLE OF CONTENTS: General Warnings . 3-4 Operating the Grill . 5-10 Proper Care and Maintenance . .11 Transporting and Storage. .12 Grill Cooking Tips.
    [Show full text]
  • Supply Considerations for Scaling up Clean Cooking Fuels for Household Energy in Low- and Middle-Income Countries
    Supply considerations for scaling up clean cooking fuels for household energy in low- and middle-income countries Puzzolo E.1,2, Zerriffi H.3, Carter E.4, Clemens H.5, Stokes H.6, Jagger P.7, Rosenthal J.8*, Petach H.9* Affiliations 1. University of Liverpool, Department of Public Health and Policy, Liverpool, United Kingdom 2. Global LPG Partnership, New York, USA 3. University of British Columbia, Forest Resources Management, Canada 4. Colorado State University, Civil and Environmental Engineering, USA 5. Hivos, The Hague, The Netherlands 6. Project Gaia, Inc., Gettysburg, PA, USA, 7. University of Michigan, School for Environment and Sustainability USA 8. Fogarty International Center, NIH, USA 9. U.S. Agency for International Development, Washington DC, USA Correspondence: ThisElisa is Puzzolo, the author PhD, manuscript MPH, MSc accepted for publication and has undergone full peer review but hasDepartment not been ofthrough Public theHealth copyediting, and Policy typesetting, pagination and proofreading process, which Universitymay lead to of differences Liverpool between this version and the Version of Record. Please cite this article as doi: 10.1029/2019GH000208 Whelan Building This article is protected by copyright. All rights reserved. Quadrangle Liverpool L69 3GB [email protected] * DISCLAIMER: The views expressed here are those of the author(s) and do not represent official statements of the U.S. National Institutes of Health or USAID or the U.S. Government. Funding Support: None. KEYWORDS: clean cooking, fuel supply, household air pollution, clean energy, clean fuels This article is protected by copyright. All rights reserved. ABSTRACT Promoting access to clean household cooking energy is an important subject for policy making in low- and middle-income countries, in light of urgent and global efforts to achieve universal energy access by 2030 (Sustainable Development Goal 7).
    [Show full text]
  • Engineered Wood Fuels for Southeast Alaska Local Wood Chips for Thermal Energy Applications, and the Specific Case of Haines, Alaska
    United States Department of Agriculture Engineered Wood Fuels for Southeast Alaska Local Wood Chips for Thermal Energy Applications, and the Specific Case of Haines, Alaska David L. Nicholls, Robert Deering, and Thomas R. Miles Forest Pacific Northwest General Technical Report May Service Research Station PNW-GTR-965 2019 In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance pro- gram, political beliefs, or reprisal or retaliation for prior civil rights activity, in any pro- gram or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in lan- guages other than English. To file a program discrimination complaint, complete the USDA Program Discrimina- tion Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_ filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form.
    [Show full text]
  • Uncle Ethan's Wood Pellet Fuel Brochure
    ® ® PREMIUMFrequently Asked WQuestionsOOD PREMIUM WOOD What are Uncle Ethan’s products made of? UnclePRODUCTS Ethan’s products are made of 100% recycled wood fiber. They are bonded with PRODUCTS naturally occurring lignin in the wood fiber. No additional wax or other artificial binders are ever used. Do they smell like chemicals? Uncle Ethan’s products only contain wood, so they smell like burning firewood. They never create a chemical odor, unlike other brands. How do I store my wood products? Because no artificial binders are used, Uncle Ethan’s wood products can be susceptible to moisture. Be sure to store your pellet fuel in a dry place. Uncle Ethan’s Pellet Fuel is a great choice for those who value nature and the responsible use of its resources. Visit UncleEthans.com for more information. s greatest pleasures life’ E Printed on paper containing 100% post-consumer recycled waste Co m e f r o m n at u r ©2011 Universal Forest Products, Inc. All rights reserved. Grand Rapids, MI 49525 Uncle Ethan’s is a trademark of UFP Eastern Division, Inc. HPBA and its logo are registered trademarks of the Patio & Barbecue Association, Inc. Uncle Ethan The characters portrayed or events described in this brochure are purely fictitious. Any resemblance to real persons is coincidental. 6704_8/11 All-Natural. No added chemicals. 100% renewable. Wood fires, the way nature intended. All-Natural Premium Wood Pellet Fuel Uncle Ethan’s pellet fuel is manufactured using only the best quality wood fiber avail- able. State-of-the-art production equipment ensures consistent low moisture, resulting in better compression.
    [Show full text]
  • Sustainable Energy Parks on Mine-Scarred Lands In
    Sustainable Energy Parks on Mine-Scarred Lands in Appalachia Market Opportunities for Switchgrass Prepared for: West Virginia University,West Water Research Institute Paid for through EPA grant funding - Assistance ID No. TR-83418501-0 4/28/2011 Sustainable Energy Parks on Mine -Scarred Lands in Appalachia Market Opportunities for Switchgrass Authors: Principal Investigator: Christine Risch Researchers: Emily Hagan Kyle Adkins (graduate assistant) Center for Business and Economic Research Marshall University One John Marshall Drive Huntington, WV 25755 Phone: (304) 696-2313 • Fax: (304) 696-6088 Acknowledgements : This report was supported by West Virginia University’s Water Research Institute, with funding by the U.S. Environmental Protection Agency. Disclaimer: The contents of this report reflect the views of the authors who are responsible for the accuracy of the data presented herein. The views expressed in this report are those of the authors and do not reflect the official policy or position of Marshall University or its governing bodies. The use of trade names, if applicable, does not signify endorsement by the authors. Page 1 of 28 Table of Contents Introduction ..................................................................................................................................... 1 Summary of Findings ...................................................................................................................... 2 Emerging Market Opportunities for Switchgrass ..........................................................................
    [Show full text]