Huernia Pendula | Plantz Africa About:Reader?Url=

Total Page:16

File Type:pdf, Size:1020Kb

Huernia Pendula | Plantz Africa About:Reader?Url= Huernia pendula | Plantz Africa about:reader?url=http://pza.sanbi.org/huernia-pendula pza.sanbi.org Huernia pendula | Plantz Africa Introduction Huernia pendula is a cliff hanger with rope-like leafless branches and bowl-shaped pendent flowers confined to dry river valleys in the Eastern Cape. It thrives in cultivation (containers, green walls) in light shady conditions. Description Description Stems succulent, leafless, very obscurely 4-angled, cylindrical, 5-8 mm in diameter, up to 900 mm long, jointed (articulated) at nodes, sparsely to densely branched, initially erect or prostrate, becoming pendulous, growing pendent from rock faces, often filling crevices and rooting where stems touch the ground, green sometimes purplish-mottled, becoming greyish green. During the dry season, the stems become light brown to purplish. Inflorescence 3- or 4-flowered (subsessile cymes) towards base of stem and lateral branches. Flowers pendulous, opening successively; pedicels short, up to 8 mm long. Corolla bowl-shaped 10-15 x 8-10 mm, lobes ascending to spreading, up to 5-7 mm in diameter, 5-6 mm long, dark maroon on inside, densely papillate. Fruit paired, fusiform (spindle-shaped) follicles. 1 of 5 2016/12/14 03:53 PM Huernia pendula | Plantz Africa about:reader?url=http://pza.sanbi.org/huernia-pendula Conservation Status Status Classified as Rare (Raimondo et al. 2009), this species is well protected by its cliff-face habitat. It is also well established in cultivation (ex situ conservation). Distribution and habitat Distribution description Confined to the Eastern Cape, growing in dry river valleys from the Kei River in the south to the Mbashe River in the north. The habitat consists mainly of inaccessible sheer shale cliffs (Emakwezini Formation, Beaufort Group, Karoo Supergroup), and the plants grow in crevices sharing their habitat with other species such as Cotyledon woodii , Gasteria excelsa , Haworthia glabrata, H. cymbiformis var. setulifera, Cotyledon orbiculata , Bulbine natalensis and B. thomasiae. Summers are hot with cooler winters (frost absent). The average daily maximum temperature is 28°C and the average daily minimum 12°C. Rainfall occurs mainly in summer (thunder showers), ranging from 300 - 800 mm per annum. Huernia pendula grows in the Eastern Valley Bushveld of the Savanna Biome (Mucina et al. 2005). Derivation of name and historical aspects History The genus Huernia was named (and misspelt) by R. Brown in 1809 in honour of Justus Heurnius, a Dutch missionary who recorded the first two succulents on South African soil when he briefly visited the Cape of Good Hope (Cape Peninsula) on the ship Gouda in 1624. These were Cotyledon orbiculata and Orbea variegata (see Gunn & Codd 1981). The spelling of Huernia, instead of Heurnia, is irrevocable due to international nomenclature ruling. 2 of 5 2016/12/14 03:53 PM Huernia pendula | Plantz Africa about:reader?url=http://pza.sanbi.org/huernia-pendula Huernia pendula was named by Eileen A. Bruce in 1951 from plants collected by Mr. G.G. Smith and Miss C. Latimer at the Bolo Reserve near Ngancule along the Kei River in 1938 and again in 1949. According to Miss Bruce this plant was first noticed in 1919 by Mr. King, a storekeeper at Ngamakwe and keen grower and lover of indigenous plants. Miss Bruce also recorded the Xhosa name for the plant: "Imitya", meaning bootlaces. The species epithet 'pendula' (Latin) pertains to the pendent growth of the stems. The cylindrical rope-like pendent stems are unique in the genus Huernia in South Africa . Many of the about 70 Huernia species have square or angled stems and are confined to Africa and Arabia. Other Huernia species recorded from sheer cliffs in southern Africa include Huernia leachii (Mozambique, Malawi) and H. procumbens (Limpopo Province, South Africa), all having roundish rope-like stems. Ecology Ecology Flowering from spring to midsummer. Flowers with scent of decaying meat and mainly pollinated by flies. The seeds borne in follicles, when opening release many seeds, each attached to its own parachute and dispersed by wind. Uses Use 3 of 5 2016/12/14 03:53 PM Huernia pendula | Plantz Africa about:reader?url=http://pza.sanbi.org/huernia-pendula Used mainly as a pot plant or occasionally grown out-of-doors in rockeries. Growing Huernia pendula Grow Huernia pendula is one of the easiest stapeliad species to grow. They require partial shade for best results. Ideal for steep embankments, hanging baskets or rockeries in Thicket and Bushveld Gardens (Van Jaarsveld 2010). Water well but allow soil to dry out before watering again (spring to autumn). Huernia pendula can also be grown in miniature succulent gardens, thriving when growing together with other succulent plants. Plants easily grown from cuttings or by division and thriving in a sandy, humus-rich soil in cultivation. Use a general succulent mix such as 2 parts sand, 1 part garden loam and 1 part compost. Add ample bone meal, and the plants can also be fed with an organic fertilizer. Cuttings are best rooted in sand. The best time is during spring or summer, and plants should be kept partially shaded. Once rooted, plants can be transferred to containers. They can also be grown from seed planted in a well-drained soil. Broadcast seeds on the medium and cover with a thin layer of sand 2-3 mm thick. Plants are relatively disease-free but rapidly succumb to fungal rot when kept too moist. Mealy bug can also be troublesome but is easily controlled by an insecticide. When grown as a pot plant, it is best to replant annually in fresh soil at the end of the resting season (early spring). References Bruce, E.A. 1951. Huernia pendula. The Flowering Plants of Africa 28: t. 1108. Bruyns, P.V. 2005. Stapeliae of southern Africa and Madagascar, vol. 1. Umdaus Press, Hatfield. Gunn, M. & Codd, L.E. 1981. Botanical exploration of southern Africa. Balkema, Cape Town. Leistner, O.A. (ed.). 2000. Seed plants of southern Africa : families and genera. Strelitzia 10. National Botanical Institute, Pretoria. 4 of 5 2016/12/14 03:53 PM Huernia pendula | Plantz Africa about:reader?url=http://pza.sanbi.org/huernia-pendula Mucina, L. & Rutherford, M.C. (eds) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute. Pretoria. Pilbeam, J. Stapeliads. 2010. The British Cactus & Succulent Society. Raimondo, D., Von Staden, L., Foden, W., Victor, J.E., Helm, N.A., Turner, R.C., Kamundi, D.A., Manyama, P.A. (eds) 2009. Red List of South African plants. Strelitzia 25. South African National Biodiversity Institute, Pretoria. Van Jaarsveld, E.J. 2010. Waterwise gardening in South Africa and Namibia. Struik Cape Town. Credits Ernst van Jaarsveld Kirstenbosch National Botanical Garden December 2010 5 of 5 2016/12/14 03:53 PM.
Recommended publications
  • Stapeliads, Morphology and Pollination, Welwitchia 5
    Morfologija in opra{evanje stapelijevk Stapeliads, morphology and pollination Iztok Mulej Matija Strli~ Stapelijevke so so~nice s ~udovitimi cvetovi in Stapeliads are succulents with beautiful flowers vonjem, ki ga taki cvetovi ne zaslu`ijo. Raz{irjene with a smell that does not match their beauty at so ve~inoma v Afriki, dotikajo se Evrope, v Aziji all. Distributed mainly in Africa, a few species can pa imajo tudi precej predstavnikov. Cvetovi so also be found in Europe, and quite a few in Asia. nekaj posebnega, ne samo po bizarni lepoti am- Their flowers are unique, not only due to the pak tudi po zgradbi. Prav tako je tudi opra{itev bizarre beauty, but also due to the unusual repro- samosvoja, saj podobne ne najdemo nikjer drug- ductive structures. Even the pollination mecha- je v rastlinskem svetu. nism has no parallel in the plant kingdom. Klju~ne besede: Keywords: stapelijevke, Apocynaceae, Asclepiadoideae, Stapeliads, Apocynaceae, Asclepiadoideae, mor- morfologija, opra{evanje. fology, pollination. Stapeliads, which are stem succulents, belong World" is the title of the web pages of Jerry to the family Apocynaceae and subfamily As- Barad from New Jersey, USA. The title says clepiadoideae. Until recently, they were everything. The flowers have a beauty and placed into the Asclepiadaceae family. The colour that can only be compared with or- stem shapes are very similar in most genera, chids. And they also share another character- but when they bloom, the beauty of the flow- istic. The pollen mass is fused in a wax pollen ers is striking as well as their unpleasant sack - pollinium, which is transferred by pol- smell! "Stapeliads, Orchids of the Succulent linators to the style.
    [Show full text]
  • Chapter 1 General Introduction
    MICROPROPAGATION AND MEDICINAL PROPERTIES OF BARLERIA GREENII AND HUERNIA HYSTRIX BY STEPHEN OLUWASEUN AMOO (M.Sc. OBAFEMI AWOLOWO UNIVERSITY, NIGERIA) Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Research Centre for Plant Growth and Development School of Biological and Conservation Sciences University of KwaZulu-Natal, Pietermaritzburg November 2009 TABLE OF CONTENTS STUDENT DECLARATION ................................................................................... vii DECLARATION BY SUPERVISORS ................................................................... viii FACULTY OF SCIENCE & AGRICULTURE DECLARATION 1 - PLAGIARISM.... ix FACULTY OF SCIENCE & AGRICULTURE DECLARATION 2 - PUBLICATIONS x ACKNOWLEDGEMENTS ..................................................................................... xii LIST OF FIGURES ............................................................................................... xiii LIST OF TABLES .................................................................................................xvii LIST OF ABBREVIATIONS .................................................................................. xix ABSTRACT….. ....................................................................................................xxii Chapter 1 General introduction ........................................................................ 1 1.1 Use of plants in horticulture and traditional medicine .......................... 1 1.2 The need for conservation of plant species ..........................................
    [Show full text]
  • Apocynaceae of Namibia
    S T R E L I T Z I A 34 The Apocynaceae of Namibia P.V. Bruyns Bolus Herbarium Department of Biological Sciences University of Cape Town Rondebosch 7701 Pretoria 2014 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens, which the South African National Biodiversity Institute (SANBI) inherited from its predecessor organisa- tions. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arbores- cent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of SANBI is partly based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It symbolises the commitment of SANBI to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s excep- tionally rich biodiversity for all people. EDITOR: Alicia Grobler PROOFREADER: Yolande Steenkamp COVER DESIGN & LAYOUT: Elizma Fouché FRONT COVER PHOTOGRAPH: Peter Bruyns BACK COVER PHOTOGRAPHS: Colleen Mannheimer (top) Peter Bruyns (bottom) Citing this publication BRUYNS, P.V. 2014. The Apocynaceae of Namibia. Strelitzia 34. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-98-3 Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa Tel.: +27 12 843 5000 E-mail: [email protected] Website: www.sanbi.org Printed by: Seriti Printing, Tel.: +27 12 333 9757, Website: www.seritiprinting.co.za Address: Unit 6, 49 Eland Street, Koedoespoort, Pretoria, 0001 South Africa Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved.
    [Show full text]
  • Prickly News South Coast Cactus & Succulent Society Newsletter | April 2021
    PRICKLY NEWS SOUTH COAST CACTUS & SUCCULENT SOCIETY NEWSLETTER | APRIL 2021 Karen ZOOM PRESENTATION SHARE YOUR GARDEN OR YOUR FAVORITE PLANT Ostler Sunday, April 14 @ 1:30 pm “Staging” Happy Spring! The cactus potting season is upon us. It is time to repot and spruce up Email me with photos of your garden and/or plants those plants that no longer fit their that we can publish as a way of staying connected. containers. [email protected] Our upcoming meeting will give you some special tips on potting and staging your plants. I always enjoy Karen Ostler’s approach to staging To learn more visit southcoastcss.org and I hope you will also. Like us on our facebook page CALL FOR PHOTOS Please E-mail photos of your favorite cacti and/or succulents to me at Follow us on Instagram, _sccss_ [email protected] by April 9th so I may present them at the upcoming Zoom meeting. If you have a plant in the ground or want to share IN THIS ISSUE your garden, those photos are also welcome. Please join in on Sunday, April 11th at 1 PM for PRESENTER OF THE MONTH 2 social half hour and 1:30 PM for the presentation. WHAT’S IN YOUR GARDEN? 3 TIP OF THE MONTH 6 Stay well and keep in touch! MINI-SHOW PLANT CALENDAR 8 MARIA CAPALDO MINISHOW SUCCULENT WINNERS 9 MINISHOW CACTUS WINNERS 13 LATIN LOOKUP 16 MINI SHOW MARCH PLANTS 18 MINI SHOW STANDINGS 24 CANCELLED EVENTS 25 BOARD OF DIRECTORS 25 1 APRIL SCCSS Presenter of the month “Staging” BY KAREN OSTLER Karen has been growing cactus since she got her first ‘real’ cactus, a Gymnocalycium friedrichii, now G.
    [Show full text]
  • Issn 0140-786X
    • ISSN 0140-786X THE JOURNAL OF THE INTERNATIONAL ASCLEPIAD SOCIETY FOUNDER-A.WOODWARD ontents May 1992 I Editorial 3 Society Matters 3 A Huernia insigniflora that isn't 6 Martin Land Ceropegia Meyeri 7 Peter Pons Ceropegia Ampliata - A look inside 8 Phil Clark Letters to the Editor 1 O Asclepiads in the Literature 13 compiled by Colin Walker A Note on the Carallumas of Jordan 17 Colin Walker Sultry and Seductive Stranger 20 Tim Longville A Word about Names 20 Phil Clark N.E.Brown's reminiscences on Stapelleae Geoff Hedgecock 21 Catalogues Received 23 Growth Forms of Ceropegia 24 Phil Clark Cover illustration: A - F Marsdenia praestans Schltr., G - N M. glabra Schltr., O - T M. kempteriana Schltr. from R. Shlechter, Die Asclepiadeceen von Deutch-Neu-Guinea (Botanish Jahrbucher 50 p. 148. 1914) Published by the International Asclepiad Society three times per subscription year. ~ The International Asclepiad Society and the Authors of Individual articles. 1992. All enquiries to be addressed to the Editor. Subscription - £10.00 per annum - year commences 1st May II INTERNATIONAL Asclepiad SOCIETY II OFFICIAL 1991/2 CHAIRMAN Philip E. Downs, 77 Chartwell Avenue, Wingerworth, Chesterfield, S42 6SR. SECRETARY L.B.Delderfield, 2 Keymer Court, Burgess Hill, West Sussex, RH15 0AA. TREASURER G.A.Hedgecock, 1 Aster Road, Haydock, St Helens, Merseyside, WA11 0NX. EDITOR P.S.Clark, Ty Cano!, Plas Teg, Llandegla, Wrecsam, Clwyd, LL11 3AO. SEED BANK SECRETARY R.P.Knowles, 26 Arbury Avenue, Blackbrook, St Helens, Merseyside, WA11 9HW. PLANT EXCHANGE P.W.Noble, 21 Caernarvon Drive, Barnburgh, Doncaster, South Yorkshire, DN5 7HF (Tel: 0709 895895) PLANT BANK SECRETARY P.Bent.
    [Show full text]
  • October, 2018
    ON THE DRY SIDE OCTOBER 2018 CENTRAL COAST CACTUS & SUCCULENT SOCIETY OCTOBER SPEAKER OF THE MONTH: GENE SCHROEDER Ferocactus: The Fantastic Barrel Cacti of the Southwest & Mexico During General Kearney’s 1846 Mexican-American War expedition to Santa Fe and the later conquest of California, Lt. Emory, an officer in his force, collected and sketched several large cacti. In 1849, now Major Emory, became director of the Mexican-American Boundary Survey tasked with making a compre- hensive survey of the natural history of this newly acquired region. Large collections of cacti were made and sent to Dr. George Engelmann who later published several papers including the 1859 “Cactaceae of the Boundary.” All were amazed by the giant barrel cacti of the new territories. They were as striking and unusual then as now. For his work, Engelmann drew from botanists and explorers of these expeditions and surveys as well as professional colleagues of that era. Their names are commemorated in current species names within the genera Ferocactus erected by Britton & Rose as part of their classic 1922 work “The Cactaceae.” Big, up to 4 feet or more in height, protected by fierce thorns, topped with large flowers and edible fruit they earned the awe and respect of all who saw them. Native usage as emergency water sources and cattle food earned them the nickname, ‘traveler’s friend.’ Ranging across approximately 30 species, they now can be found in most botanic gardens and a growing number of xeric landscapes where their size and presence make them landmark plants that are tough, long lived and generally easy to grow.
    [Show full text]
  • ADRIAN HARDY HAWORTH BIOGRAPHY Chuck Staples, CSSA Historian
    ADRIAN HARDY HAWORTH BIOGRAPHY Chuck Staples, CSSA Historian Haworth, Adrian Hardy (1767–1833)—during the golden time of botany, a leading author of succulent plants in England—with the ever popular Haworthia genus named in his honor. Born in Cottingham near Hull, England on 19 April 1767, Adrian Hardy Haworth became a gardener, amateur botanist, zoologist, taxonomist, ornithologist and entomologist. He was the son of Benjamin Haworth of Haworth Hall. His early education was with tutors which was directed toward a career in law. However, after his older brother inherited the estate after their father's death, and after allowing AH Haworth a sufficient allowance to give up the legal profession—at age 21 he devoted all his time to natural history pursuits of plants and insects. At Chelsea, England AH Haworth had one of the finest private gardens in all England—assembling the first important succulent collection of his time. His research work was due to regular visits to the Royal Botanic Gardens at Key, England—and the use of the library and herbarium of Sir Joseph Banks. Of special interest to the succulent plant enthusiast is the popular genus Haworthia that was named in AH Haworth's honor in 1809 by Dr Henri Auguste (1777–1814). Among the generic plants described by AH Haworth are: Duvalia, Epiphyllum, Mammillaria, Orbea, Tridentea and Tromotriche in 1812; Pectinaria in 1819; and Cephalophyllum, Hymenogyne and Monanthes in 1821. The genus Epiphyllum was first used as a name in c1689 by Dr Paul Hermann (1646-1695), but was never published by him until AH Haworth did so in 1812.
    [Show full text]
  • Floral Glands in Asclepiads: Structure, Diversity and Evolution
    Acta Botanica Brasilica - 31(3): 477-502. July-September 2017. doi: 10.1590/0102-33062016abb0432 Review Floral glands in asclepiads: structure, diversity and evolution Diego Demarco1 Received: December 7, 2016 Accepted: February 24, 2017 . ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity of glands recorded to date for a single structure. Keywords: anatomy, Apocynaceae, Asclepiadoideae, diversity, evolution, fl ower, secretory structures considering its most derived subfamily Asclepiadoideae. Introduction Th e close relationship between the former families Apocynaceae and Asclepiadaceae has always been recognized Apocynaceae is an extremely diverse family in since its establishment as “Apocineae” by Jussieu (1789). morphological terms, represented by trees, shrubs, herbs and climbers, with single leaves usually opposite, rarely Although Brown (1810) divided it into two families and alternate or whorled, with stipules modifi ed in colleters in this separation had been maintained in the subsequent several species (Endress & Bruyns 2000; Capelli et al.
    [Show full text]
  • Huernia Humpatana (Apocynaceae), a New Species from Southern Angola
    Available online at www.sciencedirect.com South African Journal of Botany 76 (2010) 585–587 www.elsevier.com/locate/sajb Huernia humpatana (Apocynaceae), a new species from southern Angola P.V. Bruyns Bolus Herbarium, University of Cape Town, Private Bag, 7701 Rondebosch, South Africa Received 29 March 2010; received in revised form 15 April 2010; accepted 21 April 2010 Abstract A new species, Huernia humpatana Bruyns (Apocynaceae–Ceropegieae), closely related to H. similis N.E.Br., is described from the Chela Mountains of Huila Province in southern Angola. The two species are distinguished by the 5-angled and erect stems with more prominent tubercles up to 6 mm long joined into clear angles and separated by V-shaped grooves in H. humpatana as opposed to very obtusely 4-angled stems with tubercles only 2 mm long and only indistinct grooves between the angles in H. similis. Furthermore, in H. similis the nodding corolla is ±9 mm in diameter with sepals ±2 mm long, while in H. humpatana the horizontally facing corolla is 18–20 mm in diameter with sepals 4–6 mm long. © 2010 SAAB. Published by Elsevier B.V. All rights reserved. Keywords: Angola; Apocynaceae; Ceropegieae; Huernia 1. Introduction Moçambique (Bruyns, 2005). The new species described here is known only from the western edge of the Humpata plateau in The genus Huernia R. Br. is widely distributed in sub- the Chela Mountains, near Lubango, in Huila Province. Saharan Africa, from Nigeria to South Africa and to the Horn of Africa. Six species are also found in the Arabian Peninsula, from Saudi Arabia to as far east as the former Peoples' 2.
    [Show full text]
  • Some Major Families and Genera of Succulent Plants
    SOME MAJOR FAMILIES AND GENERA OF SUCCULENT PLANTS Including Natural Distribution, Growth Form, and Popularity as Container Plants Daniel L. Mahr There are 50-60 plant families that contain at least one species of succulent plant. By far the largest families are the Cactaceae (cactus family) and Aizoaceae (also known as the Mesembryanthemaceae, the ice plant family), each of which contains about 2000 species; together they total about 40% of all succulent plants. In addition to these two families there are 6-8 more that are commonly grown by home gardeners and succulent plant enthusiasts. The following list is in alphabetic order. The most popular genera for container culture are indicated by bold type. Taxonomic groupings are changed occasionally as new research information becomes available. But old names that have been in common usage are not easily cast aside. Significant name changes noted in parentheses ( ) are listed at the end of the table. Family Major Genera Natural Distribution Growth Form Agavaceae (1) Agave, Yucca New World; mostly Stemmed and stemless Century plant and U.S., Mexico, and rosette-forming leaf Spanish dagger Caribbean. succulents. Some family yuccas to tree size. Many are too big for container culture, but there are some nice small and miniature agaves. Aizoaceae (2) Argyroderma, Cheiridopsis, Mostly South Africa Highly succulent leaves. Iceplant, split-rock, Conophytum, Dactylopis, Many of these stay very mesemb family Faucaria, Fenestraria, small, with clumps up to Frithia, Glottiphyllum, a few inches. Lapidaria, Lithops, Nananthus, Pleisopilos, Titanopsis, others Delosperma; several other Africa Shrubs or ground- shrubby genera covers. Some marginally hardy. Mestoklema, Mostly South Africa Leaf, stem, and root Trichodiadema, succulents.
    [Show full text]
  • Ecophysiology of Crassulacean Acid Metabolism (CAM)
    Annals of Botany 93: 629±652, 2004 doi:10.1093/aob/mch087, available online at www.aob.oupjournals.org INVITED REVIEW Ecophysiology of Crassulacean Acid Metabolism (CAM) ULRICH LUÈ TTGE* Institute of Botany, Technical University of Darmstadt, Schnittspahnstrasse 3±5, D-64287 Darmstadt, Germany Received: 3 October 2003 Returned for revision: 17 December 2003 Accepted: 20 January 2004 d Background and Scope Crassulacean Acid Metabolism (CAM) as an ecophysiological modi®cation of photo- synthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the ¯ow of carbon along various pathways and through various cellular compartments have been well documented and dis- cussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. d Input Input is given by a network of environmental parameters. Six major ones, CO2,H2O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level (`physiological aut-ecology'). d Receivers Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter includ- ing morphotypes and physiotypes. CAM genotypes largely remain `black boxes', and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. d Output Output is the shaping of habitats, ecosystems and communities by CAM.
    [Show full text]
  • Weed Categories for Natural and Agricultural Ecosystem Management
    Weed Categories for Natural and Agricultural Ecosystem Management R.H. Groves (Convenor), J.R. Hosking, G.N. Batianoff, D.A. Cooke, I.D. Cowie, R.W. Johnson, G.J. Keighery, B.J. Lepschi, A.A. Mitchell, M. Moerkerk, R.P. Randall, A.C. Rozefelds, N.G. Walsh and B.M. Waterhouse DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY Weed categories for natural and agricultural ecosystem management R.H. Groves1 (Convenor), J.R. Hosking2, G.N. Batianoff3, D.A. Cooke4, I.D. Cowie5, R.W. Johnson3, G.J. Keighery6, B.J. Lepschi7, A.A. Mitchell8, M. Moerkerk9, R.P. Randall10, A.C. Rozefelds11, N.G. Walsh12 and B.M. Waterhouse13 1 CSIRO Plant Industry & CRC for Australian Weed Management, GPO Box 1600, Canberra, ACT 2601 2 NSW Agriculture & CRC for Australian Weed Management, RMB 944, Tamworth, NSW 2340 3 Queensland Herbarium, Mt Coot-tha Road, Toowong, Qld 4066 4 Animal & Plant Control Commission, Department of Water, Land and Biodiversity Conservation, GPO Box 2834, Adelaide, SA 5001 5 NT Herbarium, Department of Primary Industries & Fisheries, GPO Box 990, Darwin, NT 0801 6 Department of Conservation & Land Management, PO Box 51, Wanneroo, WA 6065 7 Australian National Herbarium, GPO Box 1600, Canberra, ACT 2601 8 Northern Australia Quarantine Strategy, AQIS & CRC for Australian Weed Management, c/- NT Department of Primary Industries & Fisheries, GPO Box 3000, Darwin, NT 0801 9 Victorian Institute for Dryland Agriculture, NRE & CRC for Australian Weed Management, Private Bag 260, Horsham, Vic. 3401 10 Department of Agriculture Western Australia & CRC for Australian Weed Management, Locked Bag No. 4, Bentley, WA 6983 11 Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart, Tas.
    [Show full text]