Higher Cortical Visual Deficits

Total Page:16

File Type:pdf, Size:1020Kb

Higher Cortical Visual Deficits Review Article Address correspondence to Dr Jason J. S. Barton, Beth Israel Deaconess Medical Higher Cortical Visual Center, 4807 Collingwood Street, Vancouver, BC V6S 2B5, [email protected]. Deficits Relationship Disclosure: Dr Barton receives personal Jason J. S. Barton, MD, PhD, FRCPC compensation for serving on the advisory board of Vycor Medical, Inc, and for speaking at the LAUNCH review course ABSTRACT for residents provided by EMD Serono, Inc. Dr Barton Purpose of Review: This article reviews the various types of visual dysfunction that has also provided expert can result from lesions of the cerebral regions beyond the striate cortex. review for several law firms Recent Findings: Patients with dyschromatopsia can exhibit problems with color and receives book royalties from Springer and UpToDate. constancy. The apperceptive form of prosopagnosia is associated with damage to Dr Barton’s laboratory is posterior occipital and fusiform gyri, and an associative/amnestic form is linked to supported by grants from the damage to more anterior temporal regions. Pure alexia can be accompanied by a Canadian Institutes of Health Research and Natural Sciences surface dysgraphia. New word-length effect criteria distinguish pure alexia from and Engineering Research hemianopic dyslexia. Subtler problems with perception of numbers and faces can Council of Canada. be seen in patients with pure alexia as well. Also, a developmental form of Unlabeled Use of topographic disorientation, which is due to problems with forming cognitive maps Products/Investigational Use Disclosure: of the environment, has been discovered. In Balint syndrome, added features of Dr Barton reports no disclosure. decreased flexibility of attention in simultanagnosia include local and global * 2014, American Academy capture. Balint syndrome can affect not just localization in space, but also in time, of Neurology. as manifest in sequence agnosia. Summary: Lesions at intermediate levels of a processing hierarchy can cause difficulty with color perception or motion perception. At a higher level, ventral lesions of the occipitotemporal lobes can lead to a variety of problems with object recognition. Dorsal lesions of the occipitoparietal lobes can cause difficulty with spatial localization and guidance. Continuum (Minneap Minn) 2014;20(4):922–941. Most lesions of the visual system from the ventral occipitotemporal cortex the retina to the striate cortex charac- affect what has been colloquially teristically cause scotomata, regions of called a ‘‘what’’ stream, involved ulti- the visual field where vision is lost mately in object identification. The surrounded by regions where it is ‘‘intermediate’’ level of this stream is preserved. Lesions of extrastriate cor- involved particularly in color process- tex lead to very different types of ing, and a lesion of this will lead deficits, however. Rather than a gen- to achromatopsia. Higher-level recog- eral loss of vision constrained to a nition deficits can lead to diverse specific location in the visual field, types of general visual agnosia or a they cause a loss of a specific type of number of selective agnosias, includ- visual function that often is neither ing prosopagnosia, pure alexia, and localized nor limited to one part of the topographagnosia. In contrast, lesions field. of the dorsal occipitoparietal cortex Diverse types of visual functions are cause problems with spatial process- affected by extrastriate lesions, which ing, in what some view as a ‘‘where’’ are grouped into two broad families stream1 and others view as a focus on according to anatomic location and preparation for visually guided action.2 functional relationships.1,2 Lesions of The intermediate deficit here is 922 www.ContinuumJournal.com August 2014 Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited. KEY POINT akinetopsia, impaired motion process- find this unpleasant, as if things look dirty. h Cortical visual ing. High-level deficits are the compo- A partial defect is called dyschromatopsia. syndromes can be nents of Balint syndrome, including With dyschromatopsia, some color per- grouped into problems simultanagnosia, optic ataxia, and oc- ception remains, but the ability to with various types of ular motor apraxia, as well as distinguish one color from another is object recognition with astereognosis. reduced. For some patients, the world ventral occipitotemporal The lesions that cause the various takes on a specific tint. Rarely, patients lesions, and problems types of cortical syndromes discussed may report illusory spread of colors, in with spatial analysis and in this article are the usual suspects which an object’s color seeps out of its attention with dorsal for cerebral pathology, eg, stroke, boundaries. occipitoparietal lesions. tumors, and encephalitis. In most Color vision is processed by a cases, the temporal pattern of the network in the occipitotemporal cor- problem is the key to diagnosing the tex. Cerebral dyschromatopsia is asso- cause. For syndromes that are more ciated with bilateral lesions of the likely to emerge after bilateral lesions, lingual gyri5 (Figure 7-3); its severity such as achromatopsia or Balint syn- reflects how much of the cortical color drome, etiologies that can have bilat- network is lost.6 Unilateral lesions may eral effects should be considered. not cause a symptomatic deficit, but Thus, among the different kinds of when tested carefully, patients with stroke, postoperative watershed in- such lesions are shown to have farctions, embolic showers, and vascu- hemiachromatopsia, impaired discrim- litis would be suspects. Other causes ination of colors in the contralateral of bilateral lesions include posterior hemifield. reversible encephalopathy syndrome, An impairment of color perception multiple cerebral metastases, and her- is often associated with superior field pes simplex encephalitis. Patients with defects and other higher-order prob- a slower, progressive course of visual lems of recognition, such as proso- dysfunction may have posterior corti- pagnosia and topographagnosia. cal atrophy or the Heidenhain variant Not all color function is lost in of Creutzfeldt-Jakob disease. At the patients with achromatopsia; special other end of the spectrum from tests can show evidence of retained neurodegeneration, increased recog- red/green and blue/yellow color nition exists that some people are opponency that is based on processing born with a selective visual agnosia, by retinal ganglion cells. This residual as has been described, for example, in ability is likely responsible for the fact congenital prosopagnosia3 and devel- that such patients can perceive bound- opmental topographic disorientation.4 aries between areas of different colors, In some cases the deficit appears to but cannot identify what the respective run in families, suggesting an inherited colors are.7 Clinically, this can lead to genetic defect. the phenomenon in which they cannot read the Ishihara plates up close (at a SYNDROMES OF THE VENTRAL distance where they can see the dots, STREAM and, hence, the visible boundaries are Achromatopsia those between each dot and the white Acquired brain lesions can impair background), but can read the plates if color vision.5 Complete impairment they are far enough away that the dots is called achromatopsia, and patients merge, so that the only visible bound- with this condition see the world in aries are those between red and green grayscale (Case 7-1). Some patients regions. Continuum (Minneap Minn) 2014;20(4):922–941 www.ContinuumJournal.com 923 Copyright © American Academy of Neurology. Unauthorized reproduction of this article is prohibited. Higher Cortical Visual Deficits Case 7-1 A 41-year-old man awoke one day with a sense of distortion between the right and left halves of his vision, along with nausea and imbalance. A CT scan showed a left occipital infarction and a right vertebral arterial dissection. The next day in the hospital the patient had a right occipital infarction and noted many visual problems, which slowly improved over time. He had trouble recognizing faces, seeing their shapes, and identifying ethnicity and age of faces. Everyone appeared good-looking. He recognized people by their voices, clothing, physical posture, facial moles, or hairstyles. He could not visualize the faces of well-known actors when he heard their names. Initially the world appeared black and white, but later he saw some color tints, although he had trouble distinguishing colors that were similar to each other, such as blue and green. Although the patient was a sports car enthusiast, all cars looked the same to him. He could not recognize different buildings, which all looked like a ‘‘bunch of squares.’’ He had trouble navigating his neighborhood and got lost following a short but twisting route to the supermarket across the street. His memory for daily events was poor, causing problems. On examination, the patient’s visual acuity was normal, but he had bilateral superior altitudinal defects (Figure 7-1). The Farnsworth-Munsell color test showed severe difficulties with color discrimination (Figure 7-2). He recognized 47 of 50 words on the Warrington Recognition Memory Test but only 28 of 50 faces. Only 60% of celebrity faces were familiar, even though he recognized 100% of their names. He also performed poorly on a test of his ability to visualize the shapes and features of famous faces. MRI showed bilateral occipitotemporal ischemic lesions involving
Recommended publications
  • Phonological Activation in Pure Alexia
    Cognitive Neuropsychology ISSN: 0264-3294 (Print) 1464-0627 (Online) Journal homepage: http://www.tandfonline.com/loi/pcgn20 Phonological Activation in Pure Alexia Marie Montant & Marlene Behrmann To cite this article: Marie Montant & Marlene Behrmann (2001) Phonological Activation in Pure Alexia, Cognitive Neuropsychology, 18:8, 697-727, DOI: 10.1080/02643290143000042 To link to this article: http://dx.doi.org/10.1080/02643290143000042 Published online: 09 Sep 2010. Submit your article to this journal Article views: 47 View related articles Citing articles: 15 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=pcgn20 Download by: [Carnegie Mellon University] Date: 13 May 2016, At: 08:41 COGNITIVE NEUROPSYCHOLOGY, 2001, 18 (8), 697–727 PHONOLOGICAL ACTIVATION IN PURE ALEXIA Marie Montant CNRS, Marseille, France and Carnegie Mellon University, Pittsburgh, USA Marlene Behrmann Carnegie Mellon University and Center for the Neural Basis of Cognition, Pittsburgh, USA Pure alexia is a reading impairment in which patients appear to read letter-by-letter. This disorder is typically accounted for in terms of a peripheral deficit that occurs early on in the reading system, prior to the activation of orthographic word representations. The peripheral interpretation of pure alexia has recently been challenged by the phonological deficit hypothesis, which claims that a postlexical discon- nection between orthographic and phonological information contributes to or is responsible for the dis- order. Because this hypothesis was mainly supported by data from a single patient (IH), who also has surface dyslexia, the present study re-examined this hypothesis with another pure alexic patient (EL).
    [Show full text]
  • Cognitive Emotional Sequelae Post Stroke
    11/26/2019 The Neuropsychology of Objectives 1. Identify various cognitive sequelae that may result from stroke Stroke: Cognitive & 2. Explain how stroke may impact emotional functioning, both acutely and long-term Emotional Sequelae COX HEALTH STROKE CONFERENCE BRITTANY ALLEN, PHD, ABPP, MBA 12/13/2019 Epidemiology of Stroke Stroke Statistics • > 795,000 people in the United States have a stroke • 5th leading cause of death for Americans • ~610,000 are first or new strokes • Risk of having a first stroke is nearly twice as high for blacks as whites • ~1/4 occur in people with a history of prior stroke • Blacks have the highest rate of death due to stroke • ~140,000 Americans die every year due to stroke • Death rates have declined for all races/ethnicities for decades except that Hispanics have seen • Approximately 87% of all strokes are ischemic an increase in death rates since 2013 • Costs the United States an estimated $34 billion annually • Risk for stroke increases with age, but 34% of people hospitalized for stroke were < 65 years of • Health care services age • Medicines to treat stroke • Women have a lower stroke risk until late in life when the association reverses • Missed days of work • Approximately 15% of strokes are heralded by a TIA • Leading cause of long-term disability • Reduces mobility in > 50% of stroke survivors > 65 years of age Source: Centers for Disease Control Stroke Death Rates Neuropsychological Assessment • Task Engagement • Memory • Language • Visuospatial Functioning • Attention/Concentration • Executive
    [Show full text]
  • Prosopagnosia by B
    J. Neurol. Neurosurg. Psychiat., 1959, 22, 124. PROSOPAGNOSIA BY B. BORNSTEIN and D. P. KIDRON From the Department of Neurology, Beilinson Hospital, Petah Tiqva, Israel "And what is the nature of this knowledge or recollection? I mean to ask, Whether a person, who having seen or heard or in any way perceived anything, knows not only that, but has a conception of something else which is the subject, not of the same but of some other kind of knowledge, may not be fairly said to recollect that of which he has the conception?" "And when the recollection is derived from like things, then another consideration is sure to arise, which is, Whether the likeness in any degree falls short or not of that which is recollected?" "The Philosophy of Plato " Phaedo (the Jowett translation). Does visual agnosia exist in a partial or isolated bances in sensation time, in adaptation time, in form, in which certain qualities only are affected, visual acuity, and in brightness discrimination. as opposed to generalized visual agnosia? Many Ettlinger (1956) rejected Bay's contentions. After workers cast doubt on this concept, maintaining analysing 30 cases of head injury, he showed that that partial visual agnosia is no more than a com- some patients had neither field nor perceptual bination of defects in vision, memory, and orienta- defects, others had field but not perceptual defects, tion, appearing together. and only in eight of the 30 patients were field and The clinical elucidation of partial visual agnosia perceptual defects found together. It is true that is likely to be affected by the patient's intellectual visual agnosia is frequently associated with homony- capacity, his mental state at the time of examination, mous hemianopsia, but despite this there are cases and his ability to cooperate without being influenced of hemianopsia without gnostic defects.
    [Show full text]
  • Can We Lose Memories of Faces? Content Specificity and Awareness in a Prosopagnosic
    Can We Lose Memories of Faces? Content Specificity and Awareness in a Prosopagnosic Nancy L. Etcoff Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Neuropsychology Laboratory Massachusetts General Hospital Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/3/1/25/1755723/jocn.1991.3.1.25.pdf by guest on 18 May 2021 Roy Freeman Division of Neurology New England Deaconess Hospital Beth Israel Hospital Harvard Medical School Kyle R. Cave Department of Psychology University of California, San Diego Abstract H Prosopagnosia is a neurological syndrome in which patients nonfacial channels. The only other categories of shapes that he cannot recognize faces. Kecently it has been shown that some has marked trouble recognizing are animals and emotional prosopagnosics give evidence of “covert” recognition: they expressions, though even these impairments were not as severe show greater autonomic responses to familiar faces than to as the one for faces. Three measures (sympathetic skin re- unfamiliar ones, and respond differently to familiar faces in sponse, pupil dilation, and learning correct and incorrect learning and interference tasks. Although some patients do not names of faces) failed to show any signs of covert face recog- show covert recognition, this has usually been attributed to an nition in LH, though the measures were sensitive enough to “apperceptive” deficit that impairs perceptual analysis of the reflect autonomic reactions in LH to stimuli other than faces, input. The implication is that prosopagnosia is a deficit in access and face familiarity in normal controls. Thus prosopagnosia to, or awareness of, memories of faces: the inducing brain cannot always be attributed to a mere absence of awareness injury does not destroy the memories themselves.
    [Show full text]
  • Abadie's Sign Abadie's Sign Is the Absence Or Diminution of Pain Sensation When Exerting Deep Pressure on the Achilles Tendo
    A.qxd 9/29/05 04:02 PM Page 1 A Abadie’s Sign Abadie’s sign is the absence or diminution of pain sensation when exerting deep pressure on the Achilles tendon by squeezing. This is a frequent finding in the tabes dorsalis variant of neurosyphilis (i.e., with dorsal column disease). Cross References Argyll Robertson pupil Abdominal Paradox - see PARADOXICAL BREATHING Abdominal Reflexes Both superficial and deep abdominal reflexes are described, of which the superficial (cutaneous) reflexes are the more commonly tested in clinical practice. A wooden stick or pin is used to scratch the abdomi- nal wall, from the flank to the midline, parallel to the line of the der- matomal strips, in upper (supraumbilical), middle (umbilical), and lower (infraumbilical) areas. The maneuver is best performed at the end of expiration when the abdominal muscles are relaxed, since the reflexes may be lost with muscle tensing; to avoid this, patients should lie supine with their arms by their sides. Superficial abdominal reflexes are lost in a number of circum- stances: normal old age obesity after abdominal surgery after multiple pregnancies in acute abdominal disorders (Rosenbach’s sign). However, absence of all superficial abdominal reflexes may be of localizing value for corticospinal pathway damage (upper motor neu- rone lesions) above T6. Lesions at or below T10 lead to selective loss of the lower reflexes with the upper and middle reflexes intact, in which case Beevor’s sign may also be present. All abdominal reflexes are preserved with lesions below T12. Abdominal reflexes are said to be lost early in multiple sclerosis, but late in motor neurone disease, an observation of possible clinical use, particularly when differentiating the primary lateral sclerosis vari- ant of motor neurone disease from multiple sclerosis.
    [Show full text]
  • THE CLINICAL ASSESSMENT of the PATIENT with EARLY DEMENTIA S Cooper, J D W Greene V15
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.081133 on 16 November 2005. Downloaded from THE CLINICAL ASSESSMENT OF THE PATIENT WITH EARLY DEMENTIA S Cooper, J D W Greene v15 J Neurol Neurosurg Psychiatry 2005;76(Suppl V):v15–v24. doi: 10.1136/jnnp.2005.081133 ementia is a clinical state characterised by a loss of function in at least two cognitive domains. When making a diagnosis of dementia, features to look for include memory Dimpairment and at least one of the following: aphasia, apraxia, agnosia and/or disturbances in executive functioning. To be significant the impairments should be severe enough to cause problems with social and occupational functioning and the decline must have occurred from a previously higher level. It is important to exclude delirium when considering such a diagnosis. When approaching the patient with a possible dementia, taking a careful history is paramount. Clues to the nature and aetiology of the disorder are often found following careful consultation with the patient and carer. A focused cognitive and physical examination is useful and the presence of specific features may aid in diagnosis. Certain investigations are mandatory and additional tests are recommended if the history and examination indicate particular aetiologies. It is useful when assessing a patient with cognitive impairment in the clinic to consider the following straightforward questions: c Is the patient demented? c If so, does the loss of function conform to a characteristic pattern? c Does the pattern of dementia conform to a particular pattern? c What is the likely disease process responsible for the dementia? An understanding of cognitive function and its anatomical correlates is necessary in order to ascertain which brain areas are affected.
    [Show full text]
  • Prosopagnosia: a Clinical, Psychological, and Anatomical Study of Three Patients
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.395 on 1 April 1977. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1977, 40, 395-403 Prosopagnosia: a clinical, psychological, and anatomical study of three patients A. M. WHITELEY' AND ELIZABETH K. WARRINGTON From the Department ofNeurology, The London Hospital, and the Department ofPsychology, National Hospital, Queen Square, London SUMMARY Three patients with prosopagnosia are described of whom two had right occipital lesions. An analysis of visual and perceptual functions demonstrated a defect in perceptual classi- fication which appeared to be stimulus-specific. A special mechanism for facial recognition is postu- lated, and the importance of the right sided posterior lesion is stressed. Prosopagnosia is a rare but interesting condition unreliably, as pointers to cerebral lesions, and most in which recognition of faces is impaired. The cases have a left homonymous defect indicating right sufferer is quite unable to identify people purely by hemisphere disease, but not excluding a left sided their facial appearance but can do so without lesion (Meadows, 1974a). There are many cases, Protected by copyright. difficulty by their voice and by visual clues such as however, with bilateral field defects indicating clothing, hair colour, and gait. Recognition of other bilateral lesions, but there are cases with right visual material can be intact, but in some cases highly homonymous defects and cases with no field defects discriminative visual skills, such as species of birds at all. There are several case reports where surgery and types of fruit, are impaired (Bornstein, 1963; to right temporal and occipital lobes is responsible, De Renzi et al., 1968).
    [Show full text]
  • THE SYNDROMES of the ARTERIES of the BRAIN and SPINAL CORD Part 1 by LESLIE G
    65 Postgrad Med J: first published as 10.1136/pgmj.29.328.65 on 1 February 1953. Downloaded from THE SYNDROMES OF THE ARTERIES OF THE BRAIN AND SPINAL CORD Part 1 By LESLIE G. KILOH, M.D., M.R.C.P., D.P.M. First Assistant in the Joint Department of Psychological Medicine, Royal Victoria Infirmary and University of Durham Introduction general circulatory efficiency at the time of the Little interest is shown at present in the syn- catastrophe is of the greatest importance. An dromes of the arteries of the brain and spinal cord, occlusion, producing little effect in the presence of and this perhaps is related to the tendency to a normal blood pressure, may cause widespread minimize the importance of cerebral localization. pathological changes if hypotension co-exists. Yet these syndromes are far from being fully A marked discrepancy has been noted between elucidated and understood. It must be admitted the effects of ligation and of spontaneous throm- that in many cases precise localization is often of bosis of an artery. The former seldom produces little more than academic interest and ill effects whilst the latter frequently determines provides Protected by copyright. nothing but a measure of personal satisfaction to infarction. This is probably due to the tendency the physician. But it is worth recalling that the of a spontaneous thrombus to extend along the detailed study of the distribution of the bronchi affected vessel, sealing its branches and blocking and of the pathological anatomy of congenital its collateral circulation, and to the fact that the abnormalities of the heart, was similarly neglected arterial disease is so often generalized.
    [Show full text]
  • Number Reading in Pure Alexiaâ
    Neuropsychologia 49 (2011) 2283–2298 Contents lists available at ScienceDirect Neuropsychologia jo urnal homepage: www.elsevier.com/locate/neuropsychologia Reviews and perspectives Number reading in pure alexia—A review a,∗ b Randi Starrfelt , Marlene Behrmann a Center for Visual Cognition, Department of Psychology, Copenhagen University, O. Farimagsgade 2A, DK-1353 Copenhagen K, Denmark b Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA a r t i c l e i n f o a b s t r a c t Article history: It is commonly assumed that number reading can be intact in patients with pure alexia, and that this Received 25 October 2010 dissociation between letter/word recognition and number reading strongly constrains theories of visual Received in revised form 31 March 2011 word processing. A truly selective deficit in letter/word processing would strongly support the hypothesis Accepted 22 April 2011 that there is a specialized system or area dedicated to the processing of written words. To date, however, Available online 4 May 2011 there has not been a systematic review of studies investigating number reading in pure alexia and so the status of this assumed dissociation is unclear. We review the literature on pure alexia from 1892 to Keywords: 2010, and find no well-documented classical dissociation between intact number reading and impaired Pure alexia letter identification in a patient with pure alexia. A few studies report strong dissociations, with number Alexia without agraphia reading less impaired than letter reading, but when we apply rigorous statistical criteria to evaluate Letter-by-letter reading Visual recognition these dissociations, the difference in performance across domains is not statistically significant.
    [Show full text]
  • High-Yield Neuroanatomy
    LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page i Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page ii Aptara Inc. LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iii Aptara Inc. High-Yield TM Neuroanatomy FOURTH EDITION James D. Fix, PhD Professor Emeritus of Anatomy Marshall University School of Medicine Huntington, West Virginia With Contributions by Jennifer K. Brueckner, PhD Associate Professor Assistant Dean for Student Affairs Department of Anatomy and Neurobiology University of Kentucky College of Medicine Lexington, Kentucky LWBK110-3895G-FM[i-xviii].qxd 8/14/08 5:57 AM Page iv Aptara Inc. Acquisitions Editor: Crystal Taylor Managing Editor: Kelley Squazzo Marketing Manager: Emilie Moyer Designer: Terry Mallon Compositor: Aptara Fourth Edition Copyright © 2009, 2005, 2000, 1995 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in the United States of America. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at [email protected], or via website at http://www.lww.com (products and services).
    [Show full text]
  • 26 Aphasia, Memory Loss, Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders - - 8/4/17 12:21 PM )
    1 Aphasia, Memory Loss, 26 Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders M.-Marsel Mesulam CHAPTER The cerebral cortex of the human brain contains ~20 billion neurons spread over an area of 2.5 m2. The primary sensory and motor areas constitute 10% of the cerebral cortex. The rest is subsumed by modality- 26 selective, heteromodal, paralimbic, and limbic areas collectively known as the association cortex (Fig. 26-1). The association cortex mediates the Aphasia, Memory Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders Loss, integrative processes that subserve cognition, emotion, and comport- ment. A systematic testing of these mental functions is necessary for the effective clinical assessment of the association cortex and its dis- eases. According to current thinking, there are no centers for “hearing words,” “perceiving space,” or “storing memories.” Cognitive and behavioral functions (domains) are coordinated by intersecting large-s- cale neural networks that contain interconnected cortical and subcortical components. Five anatomically defined large-scale networks are most relevant to clinical practice: (1) a perisylvian network for language, (2) a parietofrontal network for spatial orientation, (3) an occipitotemporal network for face and object recognition, (4) a limbic network for explicit episodic memory, and (5) a prefrontal network for the executive con- trol of cognition and comportment. Investigations based on functional imaging have also identified a default mode network, which becomes activated when the person is not engaged in a specific task requiring attention to external events. The clinical consequences of damage to this network are not yet fully defined. THE LEFT PERISYLVIAN NETWORK FOR LANGUAGE AND APHASIAS The production and comprehension of words and sentences is depen- FIGURE 26-1 Lateral (top) and medial (bottom) views of the cerebral dent on the integrity of a distributed network located along the peri- hemispheres.
    [Show full text]
  • THE SYNDROMES of the ARTERIES of the BRAIN AND, SPINAL CORD Part II by LESLIE G
    I19 Postgrad Med J: first published as 10.1136/pgmj.29.329.119 on 1 March 1953. Downloaded from - N/ THE SYNDROMES OF THE ARTERIES OF THE BRAIN AND, SPINAL CORD Part II By LESLIE G. KILOH, M.D., M.R.C.P., D.P.M. First Assistant in the Joint Department of Psychological Medicine, Royal Victoria Infirmary and University of Durham The Vertebral Artery (See also Cabot, I937; Pines and Gilensky, Each vertebral artery enters the foramen 1930.) magnum in front of the roots of the hypoglossal nerve, inclines forwards and medially to the The Posterior Inferior Cerebellar Artery anterior aspect of the medulla oblongata and unites The posterior inferior cerebellar artery arises with its fellow at the lower border of the pons to from the vertebral artery at the level of the lower form the basilar artery. border of the inferior olive and winds round the The posterior inferior cerebellar and the medulla oblongata between the roots of the hypo- Protected by copyright. anterior spinal arteries are its principal branches glossal nerve. It passes rostrally behind the root- and it sometimes gives off the posterior spinal lets of the vagus and glossopharyngeal nerves to artery. A few small branches are supplied directly the lower border of the pons, bends backwards and to the medulla oblongata. These are in line below caudally along the inferolateral boundary of the with similar branches of the anterior spinal artery fourth ventricle and finally turns laterally into the and above with the paramedian branches of the vallecula. basilar artery. Branches: From the trunk of the artery, In some cases of apparently typical throm- twigs enter the lateral aspect of the medulla bosis of the posterior inferior cerebellar artery, oblongata and supply the region bounded ventrally post-mortem examination has demonstrated oc- by the inferior olive and medially by the hypo- clusion of the entire vertebral artery (e.g., Diggle glossal nucleus-including the nucleus ambiguus, and Stcpford, 1935).
    [Show full text]