Prosopagnosia: a Clinical, Psychological, and Anatomical Study of Three Patients

Total Page:16

File Type:pdf, Size:1020Kb

Prosopagnosia: a Clinical, Psychological, and Anatomical Study of Three Patients J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.395 on 1 April 1977. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1977, 40, 395-403 Prosopagnosia: a clinical, psychological, and anatomical study of three patients A. M. WHITELEY' AND ELIZABETH K. WARRINGTON From the Department ofNeurology, The London Hospital, and the Department ofPsychology, National Hospital, Queen Square, London SUMMARY Three patients with prosopagnosia are described of whom two had right occipital lesions. An analysis of visual and perceptual functions demonstrated a defect in perceptual classi- fication which appeared to be stimulus-specific. A special mechanism for facial recognition is postu- lated, and the importance of the right sided posterior lesion is stressed. Prosopagnosia is a rare but interesting condition unreliably, as pointers to cerebral lesions, and most in which recognition of faces is impaired. The cases have a left homonymous defect indicating right sufferer is quite unable to identify people purely by hemisphere disease, but not excluding a left sided their facial appearance but can do so without lesion (Meadows, 1974a). There are many cases, Protected by copyright. difficulty by their voice and by visual clues such as however, with bilateral field defects indicating clothing, hair colour, and gait. Recognition of other bilateral lesions, but there are cases with right visual material can be intact, but in some cases highly homonymous defects and cases with no field defects discriminative visual skills, such as species of birds at all. There are several case reports where surgery and types of fruit, are impaired (Bornstein, 1963; to right temporal and occipital lobes is responsible, De Renzi et al., 1968). There are often associated and a purely unilateral lesion is clinically suspected disturbances such as metamorphopsia (Critchley, (Hecaen and Angelergues, 1962; Lhermitte and 1953), achromatopsia (Meadows, 1974b), visual Pillon, 1975). There is one case of a left temporal field defects, topographical disorientation, dis- lobectomy causing prosopagnosia in a left handed turbances of body schema, constructional apraxia, patient (Tzavaras et al., 1973). In summary, it would and dressing apraxia (Hecaen and Angelergues, be agreed that a right occipito-temporal lesion is 1962). critical but the necessity of an additional left hemi- One of the outstanding questions of this condition sphere lesion, whether symmetrical or not, is still is whether a purely unilateral cerebral lesion can be questioned. responsible, or whether bilateral lesions are necessary. Another problem of prosopagnosia is the exact http://jnnp.bmj.com/ Postmortem studies, which are infrequent, give the nature of the psychological dysfunction. There are most accurate information, and the published cases few cases which have been studied in detail, and the show a common lesion in the right inferior occipito- results suggested three hypotheses. One hypothesis temporal region in the lingual and fusiform gyri. is that there is a general impairment of visuo-spatial These cases, however, also have a left hemisphere perception, and that prosopagnosia is merely one lesion which, in all but two cases, is symmetrically feature of this (De Renzi et al., 1968; Lhermitte and placed in the left occipito-temporal region (Meadows, Pillon, 1975). The second possibility is that the face 1974a; Cohn et al., 1974). In the two exceptions, the is satisfactorily perceived but it cannot be matched on September 30, 2021 by guest. left sided lesions are, respectively, a superficial to a memory store of faces (Benton and van Allen, gliosis in the parietal region (Pevzner et al., 1962), 1972). The third hypothesis is that facial perception and a tumour invading through the corpus callosum is mediated by a special perceptual process, and to the ventricular wall (Hecaen et al., 1957). The prosopagnosia is a specific defect of this system significance of these second lesions is disputed. (Tzavaras et al., 1970, 1973). It is always possible, Visual field defects can be used, although somewhat however, that there may not be a unitary explanation ofprosopagnosia and that all three factors contribute 'Present address: National Hospital, Queen Square, London WCI. to the genesis of impaired facial recognition. Accepted 12 November 1976 Further evidence for the anatomical correlates and 395 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.395 on 1 April 1977. Downloaded from 396 A. M. Whiteley and Elizabeth K. Warrington functional deficits of prosopagnosia can be obtained Examination from studies of groups of patients having known The visual acuity was R = 6/12, L = 6/6. The optic cerebral lesions but no clinically obvious prosopag- discs were normal apart from a sheath of medullated nosia. All studies are consistent in indicating that the fibres in the right eye. There was enlargement of the right hemisphere alone is responsible for visual physiological blind spot in the right eye and a peri- perceptual skills including facial recognition, and the pheral nasal field defect on the left (Fig. 1). There was left hemisphere plays little part (Benton and van a mild left hemiparesis with an extensor plantar Allen, 1968; De Renzi et al., 1968; Tzavaras et al., response. 1970; Warrington and James, 1967a). The analysis On the ward he was completely unable to recognise of prosopagnosia derived from group studies follows the medical staff by their facial appearance but could similar lines to that proposed for single case studies. do so when they spoke. He could name all objects Patients with a right hemisphere lesion show a presented to him but identified only three of 24 Ishi- general impairment of visual discrimination for hara colour plates. He could read, write, and draw objects, shapes, and letters (Warrington and James, normally, and there was no topographical confusion, 1967b; Warrington and Taylor, 1973). There also dressing difficulty, or dysphasia. appears to be a defect in memory for faces which is Apart from hypertension (BP 170/100 mmHg), the independent ofperception (Milner, 1968; Warrington general examination was normal. and James, 1967a), and a specific defect in facial recognition when compared to recognition of other Investigations visual stimuli (Yin, 1970; Tzavaras et al., 1970). Routine investigations were normal, apart from In this paper these points are raised in the discussion raised serum cholesterol and triglycerides. The radio- of three patients with prosopagnosia. Localisation of isotope brain scan was normal, but an EEG showed the cerebral lesions was obtained and the importance mild bilateral abnormalities of background activity of the right occipito-temporal region stressed. with clear-cut episodic theta and sharp waves over theProtected by copyright. Detailed psychological assessment was undertaken left hemisphere. An EMI scan showed bilateral where the perception of faces was compared with occipital lobe infarctions, the left larger than the perception of other visual stimuli. right (Fig. 2). Case reports Progress His hypertension was treated with diuretics and CASE 1 (LH 733564) methyldopa. His symptoms remained unchanged at In March 1975, F.W., a 65 year old right handed, follow-up nine months later. retired business man, suddenly developed a transient, left sided headache followed by a mild right sided CASE 2 (LH 729447) weakness and speech difficulty. These symptoms Q.L. (a female, age 55 years, right handed, school resolved in the subsequent six weeks. teacher) presented in November 1975 with inability In June 1975 he again developed a sudden short- to recognise faces. Her symptoms began six weeks previously during an evening meal when she suddenly lived headache and visual disturbance which he http://jnnp.bmj.com/ described as 'vision going but not being blind, as noticed that 'things did not look the same'. She had though in a dense fog with everything black and no headache but felt vaguely unwell and went to bed. white'. His vision improved over the next few days The next day she noticed that she could not recognise but he could not recognise people, including his wife anyone, including her family, but could deduce who and children, by their facial appearance although he they were by their clothes, and could recognise their could do so by their voices. He described faces as voices. She said people looked younger, with their being 'halfcaste, not white, not black'. Initially he had wrinkles ironed out, and she even noted that her own reflection in a mirror was unfamiliar. She also difficulty in distinguishing such things as flowers from on September 30, 2021 by guest. foliage but this had improved by the time of admis- reported that she could not tell if the bacon was sion in January 1976. Colour vision was also disturbed cooked properly or if the potatoes were completely in that his colour television appeared black and white, peeled. She had no difficulty in finding her where- and traffic lights appeared white, but the colours of abouts or in dressing. solid objects appeared normal. He also described an interlacing pattern in his upper visual fields like dark Examination strands of rope over his eyes. He had no difficulty in Her visual acuity was R = 6/9, L = 6/9. Static peri- recognising his surroundings or in dressing. The metry disclosed an incongruent left homonymous previous medical history was unremarkable. hemianopia with an upper temporal scotoma in the J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.395 on 1 April 1977. Downloaded from Prosopagnosia: a clinical, psychological, and anatomical study ofthree patients 397 .60 *60 LEFT% RIGHT 1!/2 . 0 o so. Fig. I Visualfields in cases I and 2 charted on Goldmann perimeter. Continuous lines indicate perception ofmoving targets (4, IV, =relative intensity 1.00 and Case 1 size 16 mm2, 4, 1, =intensity 1.00 RIGHT 6/9 and size 0.25 mm2, 2, 1, = relative LEFT % R intensity 0.10 and size 0.25 mm2). Dotted area (case 2) indicates static object (4, I,) notperceived.
Recommended publications
  • Cognitive Emotional Sequelae Post Stroke
    11/26/2019 The Neuropsychology of Objectives 1. Identify various cognitive sequelae that may result from stroke Stroke: Cognitive & 2. Explain how stroke may impact emotional functioning, both acutely and long-term Emotional Sequelae COX HEALTH STROKE CONFERENCE BRITTANY ALLEN, PHD, ABPP, MBA 12/13/2019 Epidemiology of Stroke Stroke Statistics • > 795,000 people in the United States have a stroke • 5th leading cause of death for Americans • ~610,000 are first or new strokes • Risk of having a first stroke is nearly twice as high for blacks as whites • ~1/4 occur in people with a history of prior stroke • Blacks have the highest rate of death due to stroke • ~140,000 Americans die every year due to stroke • Death rates have declined for all races/ethnicities for decades except that Hispanics have seen • Approximately 87% of all strokes are ischemic an increase in death rates since 2013 • Costs the United States an estimated $34 billion annually • Risk for stroke increases with age, but 34% of people hospitalized for stroke were < 65 years of • Health care services age • Medicines to treat stroke • Women have a lower stroke risk until late in life when the association reverses • Missed days of work • Approximately 15% of strokes are heralded by a TIA • Leading cause of long-term disability • Reduces mobility in > 50% of stroke survivors > 65 years of age Source: Centers for Disease Control Stroke Death Rates Neuropsychological Assessment • Task Engagement • Memory • Language • Visuospatial Functioning • Attention/Concentration • Executive
    [Show full text]
  • Prosopagnosia by B
    J. Neurol. Neurosurg. Psychiat., 1959, 22, 124. PROSOPAGNOSIA BY B. BORNSTEIN and D. P. KIDRON From the Department of Neurology, Beilinson Hospital, Petah Tiqva, Israel "And what is the nature of this knowledge or recollection? I mean to ask, Whether a person, who having seen or heard or in any way perceived anything, knows not only that, but has a conception of something else which is the subject, not of the same but of some other kind of knowledge, may not be fairly said to recollect that of which he has the conception?" "And when the recollection is derived from like things, then another consideration is sure to arise, which is, Whether the likeness in any degree falls short or not of that which is recollected?" "The Philosophy of Plato " Phaedo (the Jowett translation). Does visual agnosia exist in a partial or isolated bances in sensation time, in adaptation time, in form, in which certain qualities only are affected, visual acuity, and in brightness discrimination. as opposed to generalized visual agnosia? Many Ettlinger (1956) rejected Bay's contentions. After workers cast doubt on this concept, maintaining analysing 30 cases of head injury, he showed that that partial visual agnosia is no more than a com- some patients had neither field nor perceptual bination of defects in vision, memory, and orienta- defects, others had field but not perceptual defects, tion, appearing together. and only in eight of the 30 patients were field and The clinical elucidation of partial visual agnosia perceptual defects found together. It is true that is likely to be affected by the patient's intellectual visual agnosia is frequently associated with homony- capacity, his mental state at the time of examination, mous hemianopsia, but despite this there are cases and his ability to cooperate without being influenced of hemianopsia without gnostic defects.
    [Show full text]
  • Can We Lose Memories of Faces? Content Specificity and Awareness in a Prosopagnosic
    Can We Lose Memories of Faces? Content Specificity and Awareness in a Prosopagnosic Nancy L. Etcoff Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Neuropsychology Laboratory Massachusetts General Hospital Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/3/1/25/1755723/jocn.1991.3.1.25.pdf by guest on 18 May 2021 Roy Freeman Division of Neurology New England Deaconess Hospital Beth Israel Hospital Harvard Medical School Kyle R. Cave Department of Psychology University of California, San Diego Abstract H Prosopagnosia is a neurological syndrome in which patients nonfacial channels. The only other categories of shapes that he cannot recognize faces. Kecently it has been shown that some has marked trouble recognizing are animals and emotional prosopagnosics give evidence of “covert” recognition: they expressions, though even these impairments were not as severe show greater autonomic responses to familiar faces than to as the one for faces. Three measures (sympathetic skin re- unfamiliar ones, and respond differently to familiar faces in sponse, pupil dilation, and learning correct and incorrect learning and interference tasks. Although some patients do not names of faces) failed to show any signs of covert face recog- show covert recognition, this has usually been attributed to an nition in LH, though the measures were sensitive enough to “apperceptive” deficit that impairs perceptual analysis of the reflect autonomic reactions in LH to stimuli other than faces, input. The implication is that prosopagnosia is a deficit in access and face familiarity in normal controls. Thus prosopagnosia to, or awareness of, memories of faces: the inducing brain cannot always be attributed to a mere absence of awareness injury does not destroy the memories themselves.
    [Show full text]
  • Abadie's Sign Abadie's Sign Is the Absence Or Diminution of Pain Sensation When Exerting Deep Pressure on the Achilles Tendo
    A.qxd 9/29/05 04:02 PM Page 1 A Abadie’s Sign Abadie’s sign is the absence or diminution of pain sensation when exerting deep pressure on the Achilles tendon by squeezing. This is a frequent finding in the tabes dorsalis variant of neurosyphilis (i.e., with dorsal column disease). Cross References Argyll Robertson pupil Abdominal Paradox - see PARADOXICAL BREATHING Abdominal Reflexes Both superficial and deep abdominal reflexes are described, of which the superficial (cutaneous) reflexes are the more commonly tested in clinical practice. A wooden stick or pin is used to scratch the abdomi- nal wall, from the flank to the midline, parallel to the line of the der- matomal strips, in upper (supraumbilical), middle (umbilical), and lower (infraumbilical) areas. The maneuver is best performed at the end of expiration when the abdominal muscles are relaxed, since the reflexes may be lost with muscle tensing; to avoid this, patients should lie supine with their arms by their sides. Superficial abdominal reflexes are lost in a number of circum- stances: normal old age obesity after abdominal surgery after multiple pregnancies in acute abdominal disorders (Rosenbach’s sign). However, absence of all superficial abdominal reflexes may be of localizing value for corticospinal pathway damage (upper motor neu- rone lesions) above T6. Lesions at or below T10 lead to selective loss of the lower reflexes with the upper and middle reflexes intact, in which case Beevor’s sign may also be present. All abdominal reflexes are preserved with lesions below T12. Abdominal reflexes are said to be lost early in multiple sclerosis, but late in motor neurone disease, an observation of possible clinical use, particularly when differentiating the primary lateral sclerosis vari- ant of motor neurone disease from multiple sclerosis.
    [Show full text]
  • THE CLINICAL ASSESSMENT of the PATIENT with EARLY DEMENTIA S Cooper, J D W Greene V15
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.081133 on 16 November 2005. Downloaded from THE CLINICAL ASSESSMENT OF THE PATIENT WITH EARLY DEMENTIA S Cooper, J D W Greene v15 J Neurol Neurosurg Psychiatry 2005;76(Suppl V):v15–v24. doi: 10.1136/jnnp.2005.081133 ementia is a clinical state characterised by a loss of function in at least two cognitive domains. When making a diagnosis of dementia, features to look for include memory Dimpairment and at least one of the following: aphasia, apraxia, agnosia and/or disturbances in executive functioning. To be significant the impairments should be severe enough to cause problems with social and occupational functioning and the decline must have occurred from a previously higher level. It is important to exclude delirium when considering such a diagnosis. When approaching the patient with a possible dementia, taking a careful history is paramount. Clues to the nature and aetiology of the disorder are often found following careful consultation with the patient and carer. A focused cognitive and physical examination is useful and the presence of specific features may aid in diagnosis. Certain investigations are mandatory and additional tests are recommended if the history and examination indicate particular aetiologies. It is useful when assessing a patient with cognitive impairment in the clinic to consider the following straightforward questions: c Is the patient demented? c If so, does the loss of function conform to a characteristic pattern? c Does the pattern of dementia conform to a particular pattern? c What is the likely disease process responsible for the dementia? An understanding of cognitive function and its anatomical correlates is necessary in order to ascertain which brain areas are affected.
    [Show full text]
  • 26 Aphasia, Memory Loss, Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders - - 8/4/17 12:21 PM )
    1 Aphasia, Memory Loss, 26 Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders M.-Marsel Mesulam CHAPTER The cerebral cortex of the human brain contains ~20 billion neurons spread over an area of 2.5 m2. The primary sensory and motor areas constitute 10% of the cerebral cortex. The rest is subsumed by modality- 26 selective, heteromodal, paralimbic, and limbic areas collectively known as the association cortex (Fig. 26-1). The association cortex mediates the Aphasia, Memory Hemispatial Neglect, Frontal Syndromes and Other Cerebral Disorders Loss, integrative processes that subserve cognition, emotion, and comport- ment. A systematic testing of these mental functions is necessary for the effective clinical assessment of the association cortex and its dis- eases. According to current thinking, there are no centers for “hearing words,” “perceiving space,” or “storing memories.” Cognitive and behavioral functions (domains) are coordinated by intersecting large-s- cale neural networks that contain interconnected cortical and subcortical components. Five anatomically defined large-scale networks are most relevant to clinical practice: (1) a perisylvian network for language, (2) a parietofrontal network for spatial orientation, (3) an occipitotemporal network for face and object recognition, (4) a limbic network for explicit episodic memory, and (5) a prefrontal network for the executive con- trol of cognition and comportment. Investigations based on functional imaging have also identified a default mode network, which becomes activated when the person is not engaged in a specific task requiring attention to external events. The clinical consequences of damage to this network are not yet fully defined. THE LEFT PERISYLVIAN NETWORK FOR LANGUAGE AND APHASIAS The production and comprehension of words and sentences is depen- FIGURE 26-1 Lateral (top) and medial (bottom) views of the cerebral dent on the integrity of a distributed network located along the peri- hemispheres.
    [Show full text]
  • Psychosocial Consequences of Developmental
    Journal of Psychosomatic Research 65 (2008) 445–451 Psychosocial consequences of developmental prosopagnosia: A problem of recognition ⁎ Lucy Yardleya, , Lisa McDermotta, Stephanie Pisarskia, Brad Duchaineb, Ken Nakayamac aSchool of Psychology, University of Southampton, Southampton, UK bDepartment of Psychology, University College London, London, UK cDepartment of Psychology, Harvard University, Boston, MA, USA Received 13 December 2007; received in revised form 11 March 2008; accepted 20 March 2008 Abstract Objective: To provide the first systematic in-depth description avoidance of social situations in which face recognition was of the consequences of developmental prosopagnosia (DP; ‘face important, including family and social gatherings, and meetings blindness’) for psychosocial functioning and occupational at work. Long-term consequences could include dependence on disability, in order to determine what kind of professional others, a restricted social circle, more limited employment intervention may be needed. Methods: Semi-structured tele- opportunities, and loss of self-confidence. Conclusion: The phone interviews were carried out with 25 people whose self- potential for negative psychosocial consequences and occupa- reports of face recognition problems were confirmed by impaired tional disability posed by DP is as great as that posed by scores on the Cambridge Face Recognition Test. Thematic conditions which are currently afforded professional recognition analysis was used to inductively identify and understand and support, such as stuttering and dyslexia. Wider recognition common psychosocial consequences of DP. Results: All of the problems prosopagnosia can cause could reduce anxiety participants described recurrent and sometimes traumatic social about social interaction difficulties by making it easier to explain interaction difficulties caused by recognition problems, such as and justify recognition problems to other people, including failing to recognize close friends, work colleagues, and family employers.
    [Show full text]
  • 2-2-Patterns Neuropsychological Data Agnosia Patient GS
    Neuropsychological Data • Agnosia • Term coined by Sigmund Freud 2-2-patterns • From the Greek word for “lack of knowledge” • The inability to recognize objects when using a given sense (e.g. vision), even though that sense is basically intact (Nolte, 1999) Agnosia Patient GS • Sensory abilities intact • Language normal • Usually involves damage to the occipito-parietal • Unable to name objects pathway Agnosia Prosopagnosia • Apperceptive • Specific inability to recognize faces – Object recognition failure due to perceptual processing – Difficulty recognizing pictures w/deleted segments • Are faces and other objects in the world – Unable to utilize top-down information for pattern recognition represented in fundamentally different • Associative – Perceptual processing intact but subject cannot use information ways in memory? to recognize objects – Can draw objects but not say what they are • Does face-memory depend on – Language otherwise intact fundamentally different brain systems? – Often don’t know other things about object (how it’s used, etc.) 1 Are Faces Special? Are Faces Special? • Subjects presented with a face and asked to represent a face-part • Houses: similar performance for parts & wholes • Subjects presented with a house and asked to • Faces: whole-object advantage represent a house-part Are Faces Special? Models of Pattern Recognition • Template Models • Feature Models • Prototype Models • Neural Network Models • Objects represented in parts and holistically • Faces represented holistically Word Superiority Effect IAC
    [Show full text]
  • Clinical Consequences of Stroke
    EBRSR [Evidence-Based Review of Stroke Rehabilitation] 2 Clinical Consequences of Stroke Robert Teasell MD, Norhayati Hussein MBBS Last updated: March 2018 Abstract Cerebrovascular disorders represent the third leading cause of mortality and the second major cause of long-term disability in North America (Delaney and Potter 1993). The impairments associated with a stroke exhibit a wide diversity of clinical signs and symptoms. Disability, which is multifactorial in its determination, varies according to the degree of neurological recovery, the site of the lesion, the patient's premorbid status and the environmental support systems. Clinical evidence is reviewed as it pertains to stroke lesion location (cerebral, right & left hemispheres; lacunar and brain stem), related disorders (emotional, visual spatial perceptual, communication, fatigue, etc.) and artery(s) affected. 2. Clinical Consequences of Stroke pg. 1 of 29 www.ebrsr.com Table of Contents Abstract .............................................................................................................................................1 Table of Contents ...............................................................................................................................2 Introduction ......................................................................................................................................3 2.1 Localization of the Stroke ...........................................................................................................3 2.2 Cerebral
    [Show full text]
  • Music Therapy in the Rehabilitation of Head-Injured Clients. PUB DATE 95 NOTE 29P
    DOCUMENT RESUME ED 379 874 EC 303 747 AUTHOR Lee, Lissa TITLE Music Therapy in the Rehabilitation of Head-Injured Clients. PUB DATE 95 NOTE 29p. PUB TY7E Information Analyses (070) Guides Non-Classroom Use (055) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Cognitive Ability; Elementary Secondary Education; Evaluation Methods; *Head Injuries; Interdisciplinary Approach; Intervention; Measures (Individuals); *Music Therapy; *Neurological Impairments; Neuropsychology; *Xehabilitation IDENTIFIERS *Rancho Los Amigos Scale of Cognitive Functioning ABSTRACT This paper summarizes research on clinical applications of music therapy with closed head injury clients. It offers a rationale for including music therapy in interdisciplinary rehabilitation. The Rancho Los Amigos Levels of Cognitive Functioning are outlined, and therapeutic assessment and treatment procedures are discussed. Rehabilitation information and procedures are provided in the following areas: awareness and orientation; motor, sensory, cognitive, emotional, behavioral, and social rehabilitation; communication; and family considerations. The implications of substance abuse and post-traumatic epilepsy with the head-injured individual are also reviewed. The paper finds that music therapy has been shown to have a viable role in neuropsychological rehabilitation. The paper concludes with the hope that interdisciplinary teams will become more aggressive in including music therapists as part of the team, and the team as a whole will work to provide the best possible rehabilitation approach.
    [Show full text]
  • PICA Vertebral Artery
    Joint Annual Meeting SNG|SSN Basel, October 10th, 2012 Vascular territories and clinical Syndromes of the Posterior Circulation PD Dr Patrik Michel Neurology Service, CHUV Unité Cérébrovasculaire Posterior circulation strokes are suggested by the acute RQVHWRI« 1. Vestibular symptoms 2. Visual symptoms 3. Bilateral or crossed manifestations 4. Decreased level of consciousness at onset 5. Amnesic syndromes 1. Vestibulo-ocular manifestations of posterior circulation strokes Vertigo & nystagmus Vertical diplopia Ocular tilt reaction ¾ Skew deviation ¾ Visual tilt Is the vertigo due to stroke ? checklist Consider VWURNHRU7,$LI« Acute spontaneous onset vertigo/imbalance Patient cannot walk anymore, even with help Acute associated acute hearing loss (Æ AICA) New or unusual headache Patients with vascular risk factors, elderly, cardiac sources Other central symptoms (patient) or signs (witness) ¾ Hiccup, dysarthria, new Horner, mild long tract sign, etc. On examination: ¾ Normal head thrust (Halmagyi) and cold calorics despite persistent vertigo ¾ « Central » type nystagmus (see next slide) Is the nystagmus due to stroke ? checklist A nystagmus is in general central if it is « Multidirectional gaze-evoked Vertical Pendular, convergence-retraction Dissociated Not accompanied by vertigo/nausea Not improved by visual fixation Not useful to differentiate central from peripheral : Conjugate horizontal or rotatory nystagmus Positional or not (exception: short, stereotyped in BPPV) Transitory or persistent Nystagmus due to stroke
    [Show full text]
  • Neurological Conditions in Charaka Indriya Sthana - an Explorative Study
    International Journal of Complementary & Alternative Medicine Review article Open Access Neurological conditions in Charaka Indriya Sthana - An explorative study Abstract Volume 13 Issue 3 - 2020 Ayurveda is a traditional Indian system of medicine and ‘Charaka samhita’ has been the Prasad Mamidi, Kshama Gupta most popular referral treatise for Ayurvedic academicians, clinicians and researchers all Dept of Kayachikitsa, SKS Ayurvedic Medical College & Hospital, over the world. ‘Indriya sthana’ is one among the 8 sections of ‘Charaka samhita’ and it India comprises of 12 chapters which deals with prognostication of life expectancy based on ‘Arishta lakshanas’ (fatal signs and symptoms which indicates imminent death). Arishta Correspondence: Prasad Mamidi, Dept of Kayachikitsa, SKS lakshanas are the fatal signs which manifests in a diseased person before death. Various Ayurvedic Medical College & Hospital, Mathura, Uttar Pradesh, neurological conditions are mentioned throughout ‘Charaka Indriya sthana’ in a scattered India, Tel 7567222856, Email way. The present study attempts to screen various references pertaining to neurological conditions of ‘Charaka Indriya sthana’ and explore their rationality, clinical significance Received: June 08, 2020 | Published: June 15, 2020 and prognostic importance in present era. Various references related to neurological conditions like, ‘Neuropathies’, ‘Neuro-ophthalmological disorders’, ‘Neurocognitive disorders’, ‘Neuromuscular disorders’, ‘Neurodegenerative disorders’, ‘Lower motor neuron syndromes’, ‘Movement disorders’ and ‘Demyelinating disorders’ are mentioned in ‘Charaka Indriya sthana’. The neurological conditions mentioned in ‘Charaka Indriya sthana’ are characterized by poor prognosis, irreversible pathology, progressive in nature and commonly found in dying patients or at the end-of-life stages. It seems that neurological conditions mentioned in ‘Charaka Indriya sthana’ have clinical applicability and prognostic significance in present era also.
    [Show full text]