Amphibians Conservation in Italy: the Contribution of the WWF Oases Network P

Total Page:16

File Type:pdf, Size:1020Kb

Amphibians Conservation in Italy: the Contribution of the WWF Oases Network P This article was downloaded by: [b-on: Biblioteca do conhecimento online UP] On: 24 January 2013, At: 11:34 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Italian Journal of Zoology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tizo20 Amphibians conservation in Italy: The contribution of the WWF Oases network P. Bombi a , M. D'Amen a , D. Salvi b , M. A. Bologna a , F. Marcone c , C. Maggio c & A. Canu c a Università di Roma Tre, Dipartimento di Biologia Ambientale, Rome, Italy b CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Portugal c WWF Oasi, Rome, Italy Version of record first published: 06 Dec 2011. To cite this article: P. Bombi , M. D'Amen , D. Salvi , M. A. Bologna , F. Marcone , C. Maggio & A. Canu (2012): Amphibians conservation in Italy: The contribution of the WWF Oases network, Italian Journal of Zoology, 79:2, 287-295 To link to this article: http://dx.doi.org/10.1080/11250003.2011.623722 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Italian Journal of Zoology, June 2012; 79(2): 287–295 Amphibians conservation in Italy: The contribution of the WWF Oases network P. B OM B I 1*,M.D’AMEN1,D.SALVI2,M.A.BOLOGNA1,F.MARCONE3,C.MAGGIO3, &A.CANU3 1Università di Roma Tre, Dipartimento di Biologia Ambientale, Rome, Italy, 2CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Portugal, and 3WWF Oasi, Rome, Italy (Received 17 May 2011; accepted 29 August 2011) Abstract Amphibians have emerged as a major conservation concern because of the global decline in their numbers in recent decades. Notwithstanding, they are often neglected in conservation planning respects to other less threatened vertebrate groups. In Italy, few studies have analyzed the effectiveness of amphibian protection regimes. The main aim of this paper is to estimate the contribution of the WWF oases network to amphibians conservation in Italy. Moreover, we conducted a prioritization of this network and we individuated additional areas that should be protected for implementing an oases role. We assembled the largest and most up-to-date dataset available for amphibians in the WWF oases, and we adopted a spatial approach based on gap and irreplaceability analyses. Our results provide a critical assessment of the oases importance for amphibians conservation. Many species that are completely uncovered by oases protection have been identified, and new areas suitable for filling the conservation gap have been recognized. We recommend designation of new reserves in these areas to help guarantee amphibian conservation. Moreover, we identified those oases that ensure the representation of the largest number of species. In this light, Monte Arcosu appeared to be the most important site for the achievement of the current degree of species representation. Together with six other oases that obtained high irreplaceability scores, Monte Arcosu represents a priority for the preservation of amphibian diversity. Specific initiatives should be primarily implemented in these oases, guaranteeing that highly irreplaceable sites will maintain their crucial role in the future. Keywords: protected areas, amphibians, Italy, gap analysis, irreplaceability Introduction factors, acting synergistically, have been cited as potential causes of such declines, including: habitat Amphibians are an important component of loss and degradation, climate change, increase of biodiversity that recently came into view as a global UV-B radiation, introduction of invasive species, conservation priority because of their worldwide pollution, over-exploitation, and emerging infectious decline (Stuart et al. 2004; Wake & Vredenburg diseases (e.g., Alford & Richards 1999; Alford et al. 2008; D’Amen & Bombi 2009). Since 1970, pre- 2001; Kiesecker et al. 2001; Collins & Storfer 2003; Downloaded by [b-on: Biblioteca do conhecimento online UP] at 11:34 24 January 2013 cipitous amphibian population reductions have been Daszak et al. 2003; Stuart et al. 2004). The latest observed worldwide and scientists documented assessment of the Status of the World’s Vertebrates several extinction events, especially of tropical reports that 41% of amphibian species are threat- mountain species, in Central and South America ened (Baillie et al.2010). Amphibians have the (e.g., Pounds et al.1999; Young et al. 2001; Ron highest proportion of threatened species among the et al. 2003). Many amphibian populations are char- vertebrate groups, but also the highest proportion of acterized by natural wide fluctuations (Pechmann Data Deficient species and the lowest proportion of et al. 1991), but recent declines were far more Least Concern species (Baillie et al.2010). In Italy, widespread and severe than would be expected Andreone and Luiselli (2000) assessed the threats under normal conditions of demographic variation to amphibian populations on the basis of natural (Pounds et al. 1997; Green 2003). A number of *Correspondence: Pierluigi Bombi, Università di Roma Tre, Dipartimento di Biologia Ambientale, Viale G. Marconi 446, 00146. Rome, Italy. Email: [email protected] ISSN 1125-0003 print/ISSN 1748-5851 online © 2012 Unione Zoologica Italiana http://dx.doi.org/10.1080/11250003.2011.623722 288 P. Bombi et al. history parameters. Moreover, it has been evidenced with high species richness, species of national and that habitat loss and climate change had comparable community interest, rare and endemic species, and importance as major causes of recent population habitats and species most threatened both at national disappearances in Italy (D’Amen & Bombi 2009; and international levels. D’Amen et al. 2010a). The main aim of this paper is to estimate the Notwithstanding their imperiled status, amphib- extent to which the network of WWF oases con- ians are relatively neglected in conservation stud- tributes to protecting the amphibian species in Italy. ies with respect to other less threatened taxonomic More specifically, our work aspires to give an answer groups (Brito 2008) and they are often ignored in to the following key questions: (i) how many, and conservation planning (Rodrigues et al. 2004; Pawar which species are protected by the oases network? et al. 2007). If compared with other European coun- (ii) Which oases give the largest contribution to tries, the Italian amphibian fauna is highly diverse amphibians protection? (iii) Which additional areas and has a high percentage of endemic and/or threat- should be protected for implementing the oases role? ened species (Gasc et al.1997; Bologna 2004; Temple To do this, we evidenced on the one hand the cur- & Cox 2009). In Italy, few studies have analyzed rent gaps of conservation, in terms of species that the effectiveness of amphibians protection regime. are not, or insufficiently represented into the oases Maiorano et al. (2006, 2007) evaluated the capa- network (Jennings 2000). On the other hand, we bility of Italian national parks and Natura 2000 calculated the contribution of each oasis for rep- sites to conserve terrestrial vertebrates in the cur- resenting the current set of species. In addition rent conditions. D’Amen et al. (2010b) analyzed to analyze amphibian species richness, we adopted the long-term efficacy of the same set of protected a spatial approach based on the principle of irre- areas for amphibian conservation under two climate placeability (Pressey et al. 1994; Coetzee et al. change scenarios for the mid of 21st century. These 2009) for measuring the contribution of individ- studies evidenced that, similarly to other European ual oases. Such a framework allowed us to iden- regions (e.g., Dimitrakopoulos et al. 2004; Araújo tify priorities for the conservation of amphibians et al. 2007), existing protected areas in Italy are in Italy, both in terms of critical species and of insufficient to conserve current patterns of bio- key sites. This could help to optimize the allo- diversity. The ensemble of nationally designated cation of limited conservation funds to priority parks and Natura 2000 sites does not represent the areas, limiting the investments in areas where con- entire set of protected areas available for biodiversity servation initiatives have an high probability to be conservation. inefficient. More than 100 additional sites across Italy, known as “oases”, are protected by WWF under differ- ent conservation regimes. Such network of oases Materials and methods represents the main instrument of WWF for the Dataset conservation of Italian biodiversity. These sites are
Recommended publications
  • Corsica in Autumn
    Corsica in Autumn Naturetrek Tour Report 25 September - 2 October 2016 Report compiled by David Tattersfield Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Corsica in Autumn Tour participants: David Tattersfield and Jason Mitchell (leaders) with 10 Naturetrek clients Day 1 Sunday 25th September We arrived at Calvi airport at 1.00pm. It was sunny and hot, with a temperature of 28°C. We drove first into Calvi, to allow a brief exploration of the town and to buy provisions for our lunches. The first butterfly we saw was a Geranium Bronze, on some Pelargoniums, a new record for us, in Corsica. We travelled south, through the maquis-covered hills, crossed the dried-up Fango river and stopped by the rocky coastline, just north of Galeria, for lunch. Plants of interest, in the vicinity, included the yellow-flowered Stink Aster Dittrichia viscosa, the familiar Curry Plant Helichrysum italicum, and a robust glaucous-leaved spurge Euphorbia pithyusa subsp. pithyusa. On the rocks, by the shore, were two of the islands rare endemics, the pink Corsican Stork’s-bill Erodium corsicum and the intricately-branched sea lavender Limonium corsicum. Our first lizard was the endemic Tyrrhenian Wall Lizard, the commonest species on the island. We headed south, on the narrow winding road, stopping next at the Col de Palmarella, to enjoy the views over the Golfe de Girolata and the rugged headland of Scandola. Just before reaching Porto, we entered some very dramatic scenery of red granite cliffs and made another stop, to have a closer look at the plants and enjoy the view.
    [Show full text]
  • Effects of Emerging Infectious Diseases on Amphibians: a Review of Experimental Studies
    diversity Review Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies Andrew R. Blaustein 1,*, Jenny Urbina 2 ID , Paul W. Snyder 1, Emily Reynolds 2 ID , Trang Dang 1 ID , Jason T. Hoverman 3 ID , Barbara Han 4 ID , Deanna H. Olson 5 ID , Catherine Searle 6 ID and Natalie M. Hambalek 1 1 Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; [email protected] (P.W.S.); [email protected] (T.D.); [email protected] (N.M.H.) 2 Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; [email protected] (J.U.); [email protected] (E.R.) 3 Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; [email protected] 4 Cary Institute of Ecosystem Studies, Millbrook, New York, NY 12545, USA; [email protected] 5 US Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA; [email protected] 6 Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; [email protected] * Correspondence [email protected]; Tel.: +1-541-737-5356 Received: 25 May 2018; Accepted: 27 July 2018; Published: 4 August 2018 Abstract: Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines.
    [Show full text]
  • Discoglossus Sardus and Euproctus Montanus During the Breeding Season
    HERPETOLOGICAL JOURNAL, Vol. 9, pp. 163-167 (1999) FEEDING HABITS OF SYMPATRIC DJSCOGLOSSUS MONTALENTII, DISCOGLOSSUS SARDUS AND EUPROCTUS MONTANUS DURING THE BREEDING SEASON SEBASTIANO SALYIDI01 , ROBERTO SINDAC02 AND LlVIO EMANUELl3 'Istituto di Zoologia, Universita di Genova, Via Balbi 5, I- I6126 Genova, Italy 2Istituto per le Piante da Legno e Ambiente, Corso Casale 476, 1- 10I 32 Torino, Italy 1Acquario di Genova, Area Porto Antico - Ponte Sp inola, I- 16128 Genova Italy The diets of three Corsican amphibians, Discoglossus montalentii, Discoglossus sardus and Euproctus montanus, were studied in the Ospedale region during the breeding season. Adult specimens were collected in or around breeding pools and were stomach flushed in the field. Prey taxa included a large variety of terrestrial and aquatic prey items of variable size, indicating opportunistic predation. All species were able to catch their prey both on land and in water, but varied in the proportions of aquatic and terrestrial prey consumed. E. montanus fed largely upon benthic macroinvertebrates, suggesting predation in deep water; D. sardus mainly captured terrestrial prey; and D. montalentii showed a mixed fe eding strategy, preying upon both terrestrial and aquatic prey categories in similar proportions. Discoglossus sardus showed the highest standardized value of niche breadth (D, = 0. 769), compared to D. montalentii and E. montanus (D, = 0.544 and D, = 0.523 respectively). When prey size frequency distributions were compared, no specific differences were observed. These results indicated that, at least during the breeding season, trophic segregation among sympatric amphibians was maintained by different foraging strategies, and that the three species exploited contiguous microhabitats in different ways.
    [Show full text]
  • Strasbourg, 22 May 2002
    Strasbourg, 21 October 2015 T-PVS/Inf (2015) 18 [Inf18e_2015.docx] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 35th meeting Strasbourg, 1-4 December 2015 GROUP OF EXPERTS ON THE CONSERVATION OF AMPHIBIANS AND REPTILES 1-2 July 2015 Bern, Switzerland - NATIONAL REPORTS - Compilation prepared by the Directorate of Democratic Governance / The reports are being circulated in the form and the languages in which they were received by the Secretariat. This document will not be distributed at the meeting. Please bring this copy. Ce document ne sera plus distribué en réunion. Prière de vous munir de cet exemplaire. T-PVS/Inf (2015) 18 - 2 – CONTENTS / SOMMAIRE __________ 1. Armenia / Arménie 2. Austria / Autriche 3. Belgium / Belgique 4. Croatia / Croatie 5. Estonia / Estonie 6. France / France 7. Italy /Italie 8. Latvia / Lettonie 9. Liechtenstein / Liechtenstein 10. Malta / Malte 11. Monaco / Monaco 12. The Netherlands / Pays-Bas 13. Poland / Pologne 14. Slovak Republic /République slovaque 15. “the former Yugoslav Republic of Macedonia” / L’« ex-République yougoslave de Macédoine » 16. Ukraine - 3 - T-PVS/Inf (2015) 18 ARMENIA / ARMENIE NATIONAL REPORT OF REPUBLIC OF ARMENIA ON NATIONAL ACTIVITIES AND INITIATIVES ON THE CONSERVATION OF AMPHIBIANS AND REPTILES GENERAL INFORMATION ON THE COUNTRY AND ITS BIOLOGICAL DIVERSITY Armenia is a small landlocked mountainous country located in the Southern Caucasus. Forty four percent of the territory of Armenia is a high mountainous area not suitable for inhabitation. The degree of land use is strongly unproportional. The zones under intensive development make 18.2% of the territory of Armenia with concentration of 87.7% of total population.
    [Show full text]
  • Using Hierarchical Spatial Models to Assess the Occurrence of an Island Endemism: the Case of Salamandra Corsica Daniel Escoriza1* and Axel Hernandez2
    Escoriza and Hernandez Ecological Processes (2019) 8:15 https://doi.org/10.1186/s13717-019-0169-5 RESEARCH Open Access Using hierarchical spatial models to assess the occurrence of an island endemism: the case of Salamandra corsica Daniel Escoriza1* and Axel Hernandez2 Abstract Background: Island species are vulnerable to rapid extinction, so it is important to develop accurate methods to determine their occurrence and habitat preferences. In this study, we assessed two methods for modeling the occurrence of the Corsican endemic Salamandra corsica, based on macro-ecological and fine habitat descriptors. We expected that models based on habitat descriptors would better estimate S. corsica occurrence, because its distribution could be influenced by micro-environmental gradients. The occurrence of S. corsica was modeled according to two ensembles of variables using random forests. Results: Salamandra corsica was mainly found in forested habitats, with a complex vertical structure. These habitats are associated with more stable environmental conditions. The model based on fine habitat descriptors was better able to predict occurrence, and gave no false negatives. The model based on macro-ecological variables underestimated the occurrence of the species on its ecological boundary, which is important as such locations may facilitate interpopulation connectivity. Conclusions: Implementing fine spatial resolution models requires greater investment of resources, but this is advisable for study of microendemic species, where it is important to reduce type II error (false negatives). Keywords: Amphibian, Corsica, Mediterranean islands, Microhabitat, Salamander Introduction reason, studies evaluating the niche of ectothermic verte- Macro-ecological models are popular for evaluating eco- brates associated with forests should include parameters logical and evolutionary hypotheses for vertebrates.
    [Show full text]
  • Salamander Species Listed As Injurious Wildlife Under 50 CFR 16.14 Due to Risk of Salamander Chytrid Fungus Effective January 28, 2016
    Salamander Species Listed as Injurious Wildlife Under 50 CFR 16.14 Due to Risk of Salamander Chytrid Fungus Effective January 28, 2016 Effective January 28, 2016, both importation into the United States and interstate transportation between States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States of any live or dead specimen, including parts, of these 20 genera of salamanders are prohibited, except by permit for zoological, educational, medical, or scientific purposes (in accordance with permit conditions) or by Federal agencies without a permit solely for their own use. This action is necessary to protect the interests of wildlife and wildlife resources from the introduction, establishment, and spread of the chytrid fungus Batrachochytrium salamandrivorans into ecosystems of the United States. The listing includes all species in these 20 genera: Chioglossa, Cynops, Euproctus, Hydromantes, Hynobius, Ichthyosaura, Lissotriton, Neurergus, Notophthalmus, Onychodactylus, Paramesotriton, Plethodon, Pleurodeles, Salamandra, Salamandrella, Salamandrina, Siren, Taricha, Triturus, and Tylototriton The species are: (1) Chioglossa lusitanica (golden striped salamander). (2) Cynops chenggongensis (Chenggong fire-bellied newt). (3) Cynops cyanurus (blue-tailed fire-bellied newt). (4) Cynops ensicauda (sword-tailed newt). (5) Cynops fudingensis (Fuding fire-bellied newt). (6) Cynops glaucus (bluish grey newt, Huilan Rongyuan). (7) Cynops orientalis (Oriental fire belly newt, Oriental fire-bellied newt). (8) Cynops orphicus (no common name). (9) Cynops pyrrhogaster (Japanese newt, Japanese fire-bellied newt). (10) Cynops wolterstorffi (Kunming Lake newt). (11) Euproctus montanus (Corsican brook salamander). (12) Euproctus platycephalus (Sardinian brook salamander). (13) Hydromantes ambrosii (Ambrosi salamander). (14) Hydromantes brunus (limestone salamander). (15) Hydromantes flavus (Mount Albo cave salamander).
    [Show full text]
  • Mediswet Project-Initiative PIM an Advocacy Strategy for Island Wetland Conservation Or How Ngos Can Enhance Implementation of Resolution XII.14 of Ramsar Convention
    MedIsWet Project-Initiative PIM An Advocacy Strategy for Island Wetland Conservation or How NGOs Can Enhance Implementation of Resolution XII.14 of Ramsar Convention. Part 1: International and EU law Pantelina Emmanouilidou To cite this version: Pantelina Emmanouilidou. MedIsWet Project-Initiative PIM An Advocacy Strategy for Island Wet- land Conservation or How NGOs Can Enhance Implementation of Resolution XII.14 of Ramsar Con- vention. Part 1: International and EU law. 2019. hal-02015053 HAL Id: hal-02015053 https://hal.archives-ouvertes.fr/hal-02015053 Preprint submitted on 11 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MedIsWet Project - Initiative PIM An Advocacy Strategy for Island Wetland Conservation or How NGOs Can Enhance Implementation of Resolution XII.14 of Ramsar Convention. Part 1: International and EU law Author: Pantelina Emmanouilidou, PhD, Consultant, l [email protected] February 2019 1 Summary Introduction Chapter 1 : Protection of Island Wetlands in International law ............................................................... Section 1 . The general framework: MEA's on the protection of biodiversity .............................. Section 2 . The specific framework, the Ramsar Convention ....................................................... Chapter 2 : Protecting Island Wetlands at the EU l evel ........................................................................... Section 1 . Strategic actions deriving from the EU Treat y ............................................................
    [Show full text]
  • Dietary Shifts in the Western Whip Snake Coluber Viridtflavus LACÉPÈDE, 1789, of the Small Mediterranean Island of Ustica (Squamata: Serpentes: Colubridae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2003 Band/Volume: 16_1_2 Autor(en)/Author(s): Filippi Ernesto, Capula Massimo, Luiselli Luca M. Artikel/Article: Dietary shifts in the Western Whip Snake Coluber viridiflavus LACEPEDE, 1789, of the small Mediterranean Island of Ustica 61-66 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 16 ( 1/2): 61 - 66 61 Wien, 30. Juli 2003 Dietary shifts in the Western Whip Snake Coluber viridtflavus LACÉPÈDE, 1789, of the small Mediterranean island of Ustica (Squamata: Serpentes: Colubridae) Ernährungswandel bei Coluber virìdiflavus LACÉPÈDE, 1789 von der kleinen Mittelmeerinsel Ustica (Squamata: Serpentes: Colubridae) ERNESTO FILIPPI & MASSIMO CAPULA & LUCA LUISELLI KURZFASSUNG Wir untersuchten die taxonomische Zusammensetzung der Nahrung von Coluber viridißavus LACÉPÈDE, 1789 aus verschiedenen Lebensräumen (mediterrane Macchie, landwirtschaftlich genutztes Gebiet, Kiefernwald, Felsküste) der kleinen Insel Ustica vor der Nordküste Siziliens (Italien). Zumindest im Lebensraum "landwirt- schaftlich genutztes Gebiet" wurde ein teilweiser Wandel in den Ernährungsgewohnheiten von C. viridißavus hin- sichtlich der Art der Beutetiere festgestellt, indem die Nahrung der Schlange hier hauptsächlich aus Amphibien (Wechselkröten) und Nagetieren besteht. Vermutlich entwichelte C. viridißavus auf Ustica diese ungewöhnliche Eigenart als Reaktion auf die schlechte Verfügbarkeit der üblichen Beutetiere (Eidechsen und Nager) und die hohe Dichte an Wechselkröten im landwirtschaftlich genutzten Gebiet dieser mediterranen Insel. ABSTRACT We studied the taxonomic diet composition of Coluber viridiflavus LACÉPÈDE, 1789, collected from various habitat types (Mediterranean macchia, cultivated lands, pinewood, rocky coastline) of the small Island of Ustica, off the northern coast of Sicily (Italy).
    [Show full text]
  • Speleomantes Strinatii
    Speleomantes strinatii Region: 10 Taxonomic Authority: (Aellen, 1958) Synonyms: Common Names: French Cave Salamander English geotritone di Strinati Italian North-west Italian Cave Salamande English Order: Caudata Family: Plethodontidae Notes on taxonomy: General Information Biome Terrestrial Freshwater Marine Geographic Range of species: Habitat and Ecology Information: This species is restricted to southeastern France and northwestern The species is found in the vicinity of streams and seepages, and Italy. It ranges from sea level to around 2,500m asl. amongst rocky outcrops and caves in mountainous areas. It reproduces through the direct development of a few terrestrial eggs. Conservation Measures: Threats: Prior to being considered a separate species S. strinatii was listed on There are no threats identified other than a localised loss of habitat. Appendix II of the Berne Convention under S. italicus; also listed on However, these threats are limited, and it is not believed to be Annex IV of the EU Natural Habitats Directive under S. italicus. It is not significantly threatened. known if the species is present in any protected areas. Species population information: Although there is little available information on the abundance of this species, it is not considered to be declining in Italy. Further information is needed on the status of the populations in France. Native - Native - Presence Presence Extinct Reintroduced Introduced Vagrant Country Distribution Confirmed Possible FranceCountry: Country:Italy Native - Native - Presence Presence Extinct Reintroduced Introduced FAO Marine Habitats Confirmed Possible Major Lakes Major Rivers Upper Level Habitat Preferences Score Lower Level Habitat Preferences Score 1.4 Forest - Temperate 1 Deciduous Broadleaf Wood 1 6 Rocky areas (eg.
    [Show full text]
  • NEW Bulletin 117.Indd
    RESEARCH ARTICLES On the origin of the asp viper Vipera aspis hugyi Schinz, 1833, on the island of Montecristo, Northern Tyrrhenian Sea (Tuscan archipelago, Italy) MARCO MASSETI1,3 and MARCO A.L. ZUFFI2 1 Laboratories of Anthropology and Ethnology, Department of Evolutionistic Biology of the University of Florence, Florence, via del Proconsolo, 12, I-50122 Florence, Italy. 2 Museum Natural History and Territory, University of Pisa, via Roma 79, I-56011 Calci (Pisa), Italy. 3 Corresponding author: [email protected] ABSTRACT - For some time there has been debate regarding whether the asp viper, Vipera aspis (Linnaeus, 1758), belonged to the original fauna of the small island of Montecristo, Northern Tyrrhenian Sea (Tuscan archipelago, Italy). It has long been believed that the asp viper population of this island is made up of the subspecies Vipera aspis hugyi Schinz, 1833, also found in southern continental Italy and Sicily. A recent genetic study confirmed that this colonisation was exclusively mediated by humans, but also revealed that the extant vipers of Montecristo displayed closest relationships with those found in the Palermo region of Sicily, and southern Italy. It might be assumed that the animals that were introduced onto Montecristo originated from western Sicily. In light of recent contributions the aim of this paper is to make an original contribution regarding the times and mode of such an importation that was performed possibly around the 5th Century. ONTECRISTO has traditionally been 2009a). Wintering and migrant birds are also well Mregarded as a remote sea-bound world, represented on the island (Baccetti et al., 1981; cloaked since time immemorial in the mists of Baccetti, 1994).
    [Show full text]
  • Bsal) in the EU
    SCIENTIFIC REPORT APPROVED: 21 February 2017 doi:10.2903/j.efsa.2017.4739 Scientific and technical assistance concerning the survival, establishment and spread of Batrachochytrium salamandrivorans (Bsal) in the EU European Food Safety Authority (EFSA), Voitech Balàž, Christian Gortázar Schmidt, Kris Murray, Edoardo Carnesecchi, Ana Garcia, Andrea Gervelmeyer, Laura Martino, Irene Munoz Guajardo, Frank Verdonck, Gabriele Zancanaro and Chiara Fabris Abstract A new fungus, Batrachochytrium salamandrivorans (Bsal), was identified in wild populations of salamanders in The Netherlands, Belgium and in kept populations in Germany and UK. EFSA assessed the potential of Bsal to affect the health of wild and kept salamanders in the EU, the effectiveness and feasibility of a movement ban of traded salamanders, the validity, reliability and robustness of available diagnostic methods for Bsal detection, and possible alternative methods and feasible risk mitigation measures to ensure safe international and EU trade of salamanders and their products. Bsal was isolated and characterized in 2013 from a declining fire salamander (Salamandra salamandra) population in The Netherlands. Based on the available evidence, it is likely that Bsal is a sufficient cause for the death of Salamandra salamandra both in the laboratory and in the wild. Despite small sample sizes, the available experimental evidence indicates that Bsal is associated with disease and death in individuals of 12 European and 3 Asian Caudata, and with high mortality rate outbreaks in kept salamanders. Bsal experimental infection was detected in individuals of at least one species pertaining to the families Salamandridae, Plethodontidae, Hynobiidae and Sirenidae. Movement bans constitute key risk mitigation measures to prevent pathogen spread into naïve areas and populations.
    [Show full text]
  • Bosch.Et.Al.2013.Ecohealth.Pdf
    EcoHealth 10, 82–89, 2013 DOI: 10.1007/s10393-013-0828-4 Ó 2013 International Association for Ecology and Health Original Contribution Evidence for the Introduction of Lethal Chytridiomycosis Affecting Wild Betic Midwife Toads (Alytes dickhilleni) Jaime Bosch,1 David Garcı´a-Alonso,2 Saioa Ferna´ndez-Beaskoetxea,1 Matthew C. Fisher,3 and Trenton W. J. Garner4 1Museo Nacional de Ciencias Naturales, CSIC, Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain 2Bioparc Fuengirola, Camilo Jose´ Cela 6, Fuengirola, 29640 Malaga, Spain 3Department of Infectious Disease Epidemiology, Imperial College London, St. Mary’s Hospital, Norfolk Place, London W2 1PG, UK 4Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK Abstract: Batrachochytrium dendrobatidis is an unpredictable pathogen for European amphibian species, and existing field surveillance studies likely underestimate the scope of its distribution and effects. Mass mortality episodes recorded in Europe indicate that investigations of unstudied species should focus on members of the frog family Alytidae. Here, we report the combined results of a field survey and laboratory observations of field collected Alytes dickhilleni. Our data support the hypothesis that B. dendrobatidis has recently emerged in at least two disjunct locations in the species range and populations across much of the species range lack evidence of infection pathogen. Tadpoles taken into the laboratory from sites with infection experienced 70% mortality, unlike those taken into the laboratory from uninfected sites, and both infection and strength of infection was associated with mortality in animals collected from infected locations. Several conservation interventions are underway in response to our study, including the establishment of a captive assurance colony, a public awareness campaign, and experimental tests of disease mitigation schemes.
    [Show full text]