Development of Long-Lived Plasma Cells Autoimmunity by Suppressing

Total Page:16

File Type:pdf, Size:1020Kb

Development of Long-Lived Plasma Cells Autoimmunity by Suppressing Foxp3+ Regulatory T Cells Control Humoral Autoimmunity by Suppressing the Development of Long-Lived Plasma Cells This information is current as Eunkyeong Jang, Wang Sik Cho, Mi-La Cho, Hyun-Joo of September 30, 2021. Park, Hye-Joa Oh, Sang Mee Kang, Doo-Jin Paik and Jeehee Youn J Immunol 2011; 186:1546-1553; Prepublished online 5 January 2011; doi: 10.4049/jimmunol.1002942 Downloaded from http://www.jimmunol.org/content/186/3/1546 References This article cites 41 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/186/3/1546.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 30, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Foxp3+ Regulatory T Cells Control Humoral Autoimmunity by Suppressing the Development of Long-Lived Plasma Cells Eunkyeong Jang,* Wang Sik Cho,† Mi-La Cho,‡ Hyun-Joo Park,* Hye-Joa Oh,‡ Sang Mee Kang,* Doo-Jin Paik,† and Jeehee Youn*,† Foxp3+ regulatory T cells (Tregs) are crucial for maintaining T cell tolerance, but their role in humoral autoimmunity remains unclear. To address this, we combined a model of autoantibody-dependent arthritis (K/BxN) with Foxp3 mutant scurfy mice to generate Treg-deficient K/BxN mice, referred to as K/BxNsf mice. The disease symptoms of K/BxNsf mice were exacerbated, and this coincided with increases in extrafollicular Th cells, follicular Th cells, and germinal centers. Surprisingly, the K/BxNsf mice exhibited an abnormal accumulation of mature plasma cells in their spleens and a corresponding loss of bone marrow plasma cells. The plasma cells were unresponsive to the bone marrow homing chemokine CXCL12, despite normal expression of the chemokine receptor CXCR4. Importantly, they were long-lived and less susceptible to the cytotoxic action of cyclophosphamide. Downloaded from They also expressed less FcgRIIb and were less apoptotic in response to autoantigen–autoantibody immune complexes. This suggests that Tregs control plasma cell susceptibility to cell death induced by engagement of FcgRIIb with immune complexes. Direct cytotoxic effects of Tregs also contribute to the death of plasma cells. Thus, our results reveal that Tregs suppress the emergence of long-lived splenic plasma cells by affecting plasma cell-autonomous mechanisms as well as T cell help, thereby avoiding the persistence of humoral autoimmunity. The Journal of Immunology, 2011, 186: 1546–1553. http://www.jimmunol.org/ ystemic autoimmune diseases, such as systemic lupus cursors that emerge from these reactions are dividing, rapidly erythematosus (SLE) and rheumatoid arthritis, are char- turning over, Ab-secreting plasmablasts, which in turn differenti- S acterized by activation of autoreactive T and B cells (1, 2). ate into nondividing PCs (6). Most PCs either die within 3–4 d in This activation represents a functional loss of self-tolerance and these organs, which apparently provide only few survival niches leads to autoantibody production. Autoantibodies trigger com- for the cells, or leave the organs in search of survival niches plement- and FcR-mediated inflammatory responses in the target provided mainly by the bone marrow (BM). After arriving at the tissue, which in turn promote tissue destruction, more extensive BM, PCs terminally differentiate to end-stage Ab-secreting cells loss of self-tolerance, and ultimately symptoms of autoimmunity and attain a long life span of months or even years. Therefore, by guest on September 30, 2021 (3). Therefore, persistent production of pathogenic autoantibodies although a small proportion of long-lived PCs persist in the spleen is central to the chronic, destructive clinical manifestations of sys- and LNs, most long-lived PCs reside in the BM. These PCs are not temic autoimmune diseases. eliminated by treatments targeting B lineage cells, such as irra- The persistence of autoantibodies in autoimmune disorders can diation, prednisone, cyclophosphamide, and anti-CD20 Abs (7– be attributed either to a continuous supply of short-lived plasma- 10). Thus, along with their persistent Ab production, the resistance blasts or to the activity of long-lived plasma cells (PCs). Both of of these PCs to cytostatic treatment contributes to the difficulty of these cell populations develop as a result of Ag-specific, cognate resolving long-lived PC-mediated diseases. Despite the patho- interactions with extrafollicular T helper (TEFH) cells at extra- logical significance of long-lived PCs, little is known about how follicular B cell foci or with follicular T helper (TFH) cells within they develop and persist in vivo in autoimmune states. germinal centers (GCs) formed in peripheral lymphoid organs, Several of the steps generating peripheral autoimmunity can be such as spleen and lymph nodes (LNs) (4, 5). The early PC pre- censored by CD4+Foxp3+ regulatory T cells (Tregs). These cells were originally identified by their capacity to suppress the pro- *Department of Biomedical Sciences, College of Medicine, Hanyang University, liferation and activation of other T cells (11). However, recent Seoul 133-791, Korea; †Department of Anatomy and Cell Biology, College of Med- studies have extended their targets to diverse immune cells in- icine, Hanyang University, Seoul 133-791, Korea; and ‡Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-701, Korea cluding B cells. Tregs have been shown to suppress directly the Received for publication September 2, 2010. Accepted for publication November 30, activation of B cells, in addition to their indirect effect through 2010. suppressing the activity of TFH cells (12, 13). Their suppressive This work was supported by a National Research Foundation grant funded by the activities include perforin/granzyme-dependent cytotoxicity tar- Korean government (MEST) (2008-0058736 by Mid-career Researcher Program and geting B cells as well as T cells (14–16). In agreement with these 2009-0081790). in vitro studies, the titer of autoantibodies in autoimmune subjects Address correspondence and reprint requests to Dr. Jeehee Youn, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, 17 is inversely correlated with the activity of Tregs. For instance, Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea. E-mail address: jhyoun@ depletion and transfer of Tregs in autoimmune animals lead to in- hanyang.ac.kr creased and decreased autoantibody production, respectively (17, Abbreviations used in this article: 7-AAD, 7-aminoactinomycin D; BM, bone mar- 18). Reversal of the numerical deficit of Tregs in SLE reduces titers row; dLN, joint-draining lymph node; GC, germinal center; GPI, glucose-6- phosphate isomerase; LN, lymph node; PC, plasma cell; PSGL-1, P-selectin glyco- of autoantibodies in vivo (19). However, how Tregs affect the ac- protein ligand 1; SLE, systemic lupus erythematosus; TEFH, extrafollicular helper T; tivity of autoantibody-producing PCs in vivo remains unknown. T , follicular helper T; Treg, regulatory T cell. FH We undertook the current study to investigate whether Tregs al- Copyright Ó 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00 ter the physiology of PCs, using a murine autoantibody-mediated www.jimmunol.org/cgi/doi/10.4049/jimmunol.1002942 The Journal of Immunology 1547 disease model named K/BxN. The spontaneous development of purified using TRIzol reagent (Life Technologies). The level of FcgRIIb severe arthritis in this model depends on the production of auto- mRNA was measured by quantitative RT-PCR using an iCycler thermo- antibodies to glucose-6-phosphate isomerase (GPI) (20). Pre- cycler (Bio-Rad). Relative amounts of FcgRIIb transcripts were normal- ized to the amounts of b2-microglobulin transcript. The primer sequences viously, we found that despite the loss of self-tolerance, func- used were as follows: FcgRIIb forward, 59-GGA AGA CAC GGT GAC tionally intact Foxp3+ Tregs exist in the K/BxN mice (21). This ACT GA-39 ;FcgRIIb reverse, 59-TGC TCC ATT TGA CAC CGA TA-39; prompted us to consider the in vivo role of Tregs in autoantibody b2-microglobulin forward, 59-TGA CCAGCT TGT ATG CTA TC-39; b2- production. We show in this study that in addition to enhancing the microglobulin reverse, 59-CAG TGT GAG CCA GGA TAT AG-39. development of Th cell subsets, Treg deficiency results in changes BrdU incorporation assays intrinsic to PCs—as evidenced by their aberrant localization, mat- Mice were fed drinking water containing 0.8 mg/ml BrdU (Sigma-Aldrich) uration, and life span—which favor the persistence of humoral for 14–28 d. The water was protected from light and changed every 2 d. immunity. Thus, our results demonstrating PC regulation by Tregs After staining for B220 and CD138, splenocytes and dLN cells extracted provide novel insight into how Tregs limit humoral memory. from the mice were fixed, permeabilized, treated with 50 Kunitz units DNase (Sigma-Aldrich), and then stained with FITC-conjugated anti-BrdU mAb according to the manufacturer’s instructions (BD Bioscience). BrdU Materials and Methods incorporation in B220loCD138+ cells was determined by FACS analysis. Mice Cell culture A cross between KRN TCR-transgenic mice on a C57BL/6 background To determine whether Tregs are cytotoxic to PCs, coculture experiments (K/B) and NOD mice generated arthritic transgenic progeny (K/BxN) and were carried out.
Recommended publications
  • Regulatory Lymphocytes: the Dice That Resolve the Tumor Endgame Subhadip Pati, Anandi Chowdhury, Sumon Mukherjee, Aharna Guin, Shravanti Mukherjee and Gaurisankar Sa*
    Pati et al. Applied Cancer Research (2020) 40:7 Applied Cancer Research https://doi.org/10.1186/s41241-020-00091-0 REVIEW Open Access Regulatory lymphocytes: the dice that resolve the tumor endgame Subhadip Pati, Anandi Chowdhury, Sumon Mukherjee, Aharna Guin, Shravanti Mukherjee and Gaurisankar Sa* Abstract A large number of cancer patients relapse after chemotherapeutic treatment. The immune system is capable of identifying and destroying cancer cells, so recent studies have highlighted the growing importance of using combinatorial chemotherapy and immunotherapy. However, many patients have innate or acquired resistance to immunotherapies. Long-term follow-up in a pooled meta-analysis exhibited long-term survival in approximately 20% of patients treated with immune checkpoint inhibitors or the adoptive transfer of chimeric T cells. It has been reported that high levels of immunoregulatory cells in cancer patients contribute to immunotherapy resistance via immunosuppression. Among the most important regulatory cell subtypes are the CD4+ T-regulatory cells (Tregs), identified by their expression of the well-characterized, lineage-specific transcription factor FOXP3. In addition to CD4+ Tregs, other regulatory cells present in the tumor microenvironment, namely CD8+ Tregs and IL10-producing B-regulatory cells (Bregs) that also modulate the immune response in solid and lymphoid tumors. These cells together have detrimental effects on tumor immune surveillance and anti-tumor immunity. Therefore, targeting these regulatory lymphocytes will be crucial in improving treatment outcomes for immunotherapy. Keywords: Breg, CTLA4, FOXP3, Immunotherapy, IL10, PDL1, Treg Background neo-antigens, which are not present in non-cancerous The suppression of anti-tumor immune responses and cells [5]. These neo-antigens offer a clinical advantage augmentation of tumor-promoting immune responses since the tumor cells expressing neo-antigens are then both contribute to tumor progression [1].
    [Show full text]
  • Regulatory T Cell Research
    Regulatory T cell research Unique kits for cell isolation Harmonized cell culture and expansion tools Convenient functional assay tools Germany/Austria/ Benelux France Nordics and Baltics South Korea Switzerland Miltenyi Biotec B.V. Miltenyi Biotec SAS Miltenyi Biotec Norden AB Miltenyi Biotec Korea Co., Ltd Reliable flow cytometry analysis Miltenyi Biotec GmbH Schipholweg 68 H 10 rue Mercoeur Scheelevägen 17 Arigi Bldg. 8F Friedrich-Ebert-Straße 68 2316 XE Leiden 75011 Paris, France 223 70 Lund 562 Nonhyeon-ro 51429 Bergisch Gladbach The Netherlands Phone +33 1 56 98 16 16 Sweden Gangnam-gu Germany [email protected] Fax +33 1 56 98 16 17 [email protected] Seoul 06136, South Korea Phone +49 2204 8306-0 Customer service [email protected] Customer service Sweden Phone +82 2 555 1988 Fax +49 2204 85197 The Netherlands Phone 0200-111 800 Fax +82 2 555 8890 [email protected] Phone 0800 4020120 Italy Fax 046-280 72 99 [email protected] Fax 0800 4020100 Miltenyi Biotec S.r.l. Customer service Denmark USA/Canada Customer service Belgium Via Persicetana, 2/D Phone 80 20 30 10 Spain Miltenyi Biotec Inc. Phone 0800 94016 40012 Calderara di Reno (BO) Fax +46 46 280 72 99 Miltenyi Biotec S.L. 2303 Lindbergh Street Fax 0800 99626 Italy Customer service C/Luis Buñuel 2 Auburn, CA 95602, USA Customer service Luxembourg Phone +39 051 6 460 411 Norway, Finland, Iceland, Ciudad de la Imagen Phone 800 FOR MACS Phone 800 24971 Fax +39 051 6 460 499 and Baltic countries 28223 Pozuelo de Alarcón (Madrid) Phone +1 530 888 8871 Fax 800 24984 [email protected] Phone +46 46 280 72 80 Spain Fax +1 877 591 1060 Fax +46 46 280 72 99 Phone +34 91 512 12 90 [email protected] China Japan Fax +34 91 512 12 91 Miltenyi Biotec Technology & Miltenyi Biotec K.K.
    [Show full text]
  • CD8+CD122+Cd49dlow Regulatory T Cells Maintain T-Cell
    + + CD8 CD122 CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity Kazuyuki Akanea,b, Seiji Kojimab, Tak W. Makc,1, Hiroshi Shikud,e, and Haruhiko Suzukia,1 aDepartment of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; bDepartment of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; cCampbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada M5G 2M9; dDepartment of Cancer Vaccine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; and eDepartment of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan Contributed by Tak W. Mak, January 15, 2016 (sent for review October 5, 2015; reviewed by Toshiaki Ohteki and Heiichiro Udono) The Fas/FasL (CD95/CD178) system is required for immune regula- regulatory action are available. Therefore, it is not clear precisely tion; however, it is unclear in which cells, when, and where Fas/FasL which subset of T cells express FasL or where Fas/FasL-dependent + molecules act in the immune system. We found that CD8+CD122+ CD8 Tregs, if such cells exist, are located and at which point cells, which are mostly composed of memory T cells in compari- they function. Thus, the ultimate pathophysiological role of the + − son with naïve cells in the CD8 CD122 population, were previ- Fas/FasL system is still unknown. ously shown to include cells with regulatory activity and could Regulation of the immune reaction is of pivotal importance be separated into CD49dlow cells and CD49dhigh cells.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • T Cells by Regulatory T Cells + CD8 Differential Suppression of Tumor
    Differential Suppression of Tumor-Specific CD8 + T Cells by Regulatory T Cells Edward James, Alex Yeh, Cathy King, Firouzeh Korangy, Ian Bailey, Denise S. Boulanger, Benoît J. Van den Eynde, This information is current as Nicholas Murray and Tim J. Elliott of October 2, 2021. J Immunol 2010; 185:5048-5055; Prepublished online 4 October 2010; doi: 10.4049/jimmunol.1000134 http://www.jimmunol.org/content/185/9/5048 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/10/04/jimmunol.100013 Material 4.DC1 References This article cites 42 articles, 19 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/185/9/5048.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Differential Suppression of Tumor-Specific CD8+ T Cells by Regulatory T Cells Edward James,* Alex Yeh,*,1 Cathy King,* Firouzeh Korangy,† Ian Bailey,* Denise S.
    [Show full text]
  • Regulatory T-Cell Therapy in Crohn's Disease: Challenges and Advances
    Recent advances in basic science Regulatory T- cell therapy in Crohn’s disease: Gut: first published as 10.1136/gutjnl-2019-319850 on 24 January 2020. Downloaded from challenges and advances Jennie N Clough ,1,2 Omer S Omer,1,3 Scott Tasker ,4 Graham M Lord,1,5 Peter M Irving 1,3 1School of Immunology and ABStract pathological process increasingly recognised as Microbial Sciences, King’s The prevalence of IBD is rising in the Western world. driving intestinal inflammation and autoimmunity College London, London, UK 2NIHR Biomedical Research Despite an increasing repertoire of therapeutic targets, a is the loss of immune homeostasis secondary to Centre at Guy’s and Saint significant proportion of patients suffer chronic morbidity. qualitative or quantitative defects in the regulatory Thomas’ NHS Foundation Trust Studies in mice and humans have highlighted the critical T- cell (Treg) pool. and King’s College, London, UK + 3 role of regulatory T cells in immune homeostasis, with Tregs are CD4 T cells that characteristically Department of defects in number and suppressive function of regulatory Gastroenterology, Guy’s and express the high- affinity IL-2 receptor α-chain Saint Thomas’ Hospitals NHS T cells seen in patients with Crohn’s disease. We review (CD25) and master transcription factor Forkhead Trust, London, UK the function of regulatory T cells and the pathways by box P-3 (Foxp3) which is essential for their suppres- 4 Division of Transplantation which they exert immune tolerance in the intestinal sive phenotype and stability.4–6
    [Show full text]
  • Regulatory T Cells Suppress Th17 Cell Ca2+ Signaling in the Spinal Cord During Murine Autoimmune Neuroinflammation
    + Regulatory T cells suppress Th17 cell Ca2 signaling in the spinal cord during murine autoimmune neuroinflammation Shivashankar Othya,1,2, Amit Jairamana,1, Joseph L. Dynesa, Tobias X. Donga, Cornelia Tunea,3, Andriy V. Yeromina, Angel Zavalaa, Chijioke Akunwafoa, Fangyi Chena, Ian Parkera,b, and Michael D. Cahalana,c,2 aDepartment of Physiology & Biophysics, University of California, Irvine, CA 92697; bDepartment of Neurobiology & Behavior, University of California, Irvine, CA 92697; and cInstitute for Immunology, University of California, Irvine, CA 92697 Contributed by Michael D. Cahalan, June 11, 2020 (sent for review April 15, 2020; reviewed by Jason G. Cyster and Stefan Feske) T lymphocyte motility and interaction dynamics with other with several autoimmune and systemic inflammatory diseases, and immune cells are vital determinants of immune responses. Regu- are considered to be the main pathogenic cells in the experimental latory T (Treg) cells prevent autoimmune disorders by suppressing autoimmune encephalomyelitis (EAE) murine model of multiple excessive lymphocyte activity, but how interstitial motility pat- sclerosis (6, 7). However, no studies have yet tracked associations terns of Treg cells limit neuroinflammation is not well understood. between endogenous Th17 and Treg cells in relation to APCs We used two-photon microscopy to elucidate the spatial organi- within the complex inflammatory tissue environment. zation, motility characteristics, and interactions of endogenous A well-established signal transduction pathway links TCR binding Treg and Th17 cells together with antigen-presenting cells (APCs) of peptide-MHC on APCs to proximal signaling events leading to within the spinal cord leptomeninges in experimental autoim- 2+ generation of IP3 and consequent depletion of Ca from the en- mune encephalomyelitis (EAE), an animal model of multiple doplasmic reticulum (ER), mobilization of ER STIM1 proteins to sclerosis.
    [Show full text]
  • Regulatory T Cells Suppress Inflammation and Blistering in Pemphigoid Diseases
    ORIGINAL RESEARCH published: 24 November 2017 doi: 10.3389/fimmu.2017.01628 Regulatory T Cells Suppress inflammation and Blistering in Pemphigoid Diseases Katja Bieber1*‡, Shijie Sun1†‡, Mareike Witte2, Anika Kasprick1, Foteini Beltsiou1, Martina Behnen3, Tamás Laskay3, Franziska S. Schulze1, Elena Pipi1, Niklas Reichhelm1, René Pagel4, Detlef Zillikens 2, Enno Schmidt1,2, Tim Sparwasser 5, Kathrin Kalies4 and Ralf J. Ludwig1,2 1 Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany, 2 Department of Dermatology, University of Lübeck, Lübeck, Germany, 3 Department for Infectious Diseases and Microbiology, University of Lübeck, Edited by: Lübeck, Germany, 4 Institute of Anatomy, University of Lübeck, Lübeck, Germany, 5 Institute for Experimental Infection Kjetil Taskén, Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz University of Oslo, Norway Centre for Infection Research and the Hannover Medical School, Hanover, Germany Reviewed by: Zlatko Kopecki, University of South Australia, Regulatory T cells (Tregs) are well known for their modulatory functions in adaptive Australia immunity. Through regulation of T cell functions, Tregs have also been demonstrated Hajo Haase, to indirectly curb myeloid cell-driven inflammation. However, direct effects of Tregs Technische Universität Berlin, Germany on myeloid cell functions are insufficiently characterized, especially in the context of Johan Van Der Vlag, myeloid cell-mediated diseases, such as pemphigoid diseases (PDs). PDs are caused Radboud University Nijmegen, Netherlands by autoantibodies targeting structural proteins of the skin. Autoantibody binding triggers *Correspondence: myeloid cell activation through specific activation of Fc gamma receptors, leading to skin Katja Bieber inflammation and subepidermal blistering. Here, we used mouse models to address the [email protected] potential contribution of Tregs to PD pathogenesis in vivo.
    [Show full text]
  • Regulatory T Cells Inhibit T Cell Activity by Downregulating CD137 Ligand Via CD137 Trogocytosis
    cells Article Regulatory T Cells Inhibit T Cell Activity by Downregulating CD137 Ligand via CD137 Trogocytosis Khang Luu 1,2,3,4,5 , Mugdha Vijay Patwardhan 1,2,3 , Qun Zeng 1,2,3, Stina L. Wickström 5 , Andreas Lundqvist 5 and Herbert Schwarz 1,2,3,4,* 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; [email protected] (K.L.); [email protected] (M.V.P.); [email protected] (Q.Z.) 2 NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore 3 NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore 4 Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 117456, Singapore 5 Department of Oncology-Pathology, Karolinska Institutet, 171 64 Stockholm, Sweden; [email protected] (S.L.W.); [email protected] (A.L.) * Correspondence: [email protected] Abstract: CD137 is a costimulatory molecule expressed on activated T cells. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), which use the CD137—CD137L system to enhance immune responses. It was, therefore, surprising to discover CD137 expression on regulatory T cells (Treg). The function of CD137 in Treg are controversial. While some studies report that CD137 signalling converts Treg to effector T cells (Teff), other studies find that CD137-expressing Treg display a stronger inhibitory activity than CD137- Treg. Here, we describe that CD137 on Treg binds Citation: Luu, K.; Patwardhan, M.V.; Zeng, Q.; Wickström, S.L.; Lundqvist, A.; to CD137L on APC, upon which one of the two molecules is transferred via trogocytosis to the other Schwarz, H.
    [Show full text]
  • Cellular Immunology 339 (2019) 29–32
    Cellular Immunology 339 (2019) 29–32 Contents lists available at ScienceDirect Cellular Immunology journal homepage: www.elsevier.com/locate/ycimm Novel regulatory Th17 cells and regulatory B cells in modulating autoimmune diseases T ⁎ Bhagirath Singha,b,c, , Kelly L. Summersa,b,d, Steven M. Kerfoota,b a Centre for Human Immunology, University of Western Ontario, London, ON, Canada b Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada c Robarts Research Institute, University of Western Ontario, London, ON, Canada d Lawson Health Research Institute, London, ON, Canada ARTICLE INFO ABSTRACT Keywords: Pathogenic lymphocytes aberrantly recognize and mount an immune response against self-antigens, leading to Autoimmune diseases the destruction of healthy cells, tissues and organs. Recent studies have shown that both B and T lymphocytes Breg cells contribute to the development, prevention and modulation of various autoimmune diseases. Regulatory T and B Regulatory Th17 cells cell subsets appear to play a prominent role in the prevention of autoimmune diseases. The recent identification Treg17 cells of novel regulatory Th17 cells, termed as Treg17 cells, has expanded the scope of regulatory T lymphocytes (Treg cells) in the prevention of autoimmune diseases. Similarly, novel regulatory B cell subsets, termed as Breg cells, acting on their own or by inducing Treg cells have extended the role of B lymphocytes in the prevention and regulation of autoimmune diseases. We suggest that Treg17 cells and Breg cells have an important im- munoregulatory role in autoimmune diseases. 1. Introduction 1.1. Regulatory cells and autoimmunity Autoimmune diseases generally result from the breakdown of the The crucial role of regulatory cells in self-tolerance and auto- immunoregulatory mechanisms that control autoreactive T and/or B immunity has been established in many autoimmune diseases.
    [Show full text]
  • Regulatory T Cells Fail to Suppress Fast Homeostatic Proliferation in Vitro
    life Article Regulatory T Cells Fail to Suppress Fast Homeostatic Proliferation In Vitro Daniil Shevyrev 1,*, Valeriy Tereshchenko 2, Elena Blinova 1, Nadezda Knauer 1, Ekaterina Pashkina 1, Alexey Sizikov 3 and Vladimir Kozlov 1 1 Laboratory of Clinical Immunopathology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; [email protected] (E.B.); [email protected] (N.K.); [email protected] (E.P.); [email protected] (V.K.) 2 Laboratory of Molecular Immunology, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; [email protected] 3 Rheumatology Department, Research Institute for Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-923-134-5505 Abstract: Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid Citation: Shevyrev, D.; Tereshchenko, arthritis and 18 healthy volunteers.
    [Show full text]
  • Role of Regulatory T Cells in Rheumatoid Arthritis: Facts and Hypothesis
    Autoimmun Highlights (2010) 1:45–51 DOI 10.1007/s13317-010-0008-2 REVIEW ARTICLE Role of regulatory T cells in rheumatoid arthritis: facts and hypothesis Alessia Alunno • Elena Bartoloni • Giuseppe Nocentini • Onelia Bistoni • Simona Ronchetti • Maria Grazia Petrillo • Carlo Riccardi • Roberto Gerli Received: 01 April 2010 / Accepted: 06 April 2010 / Published online: … … … © Springer-Verlag 2010 Abstract Regulatory T cells (Treg) are a CD4+ lympho- Introduction cyte subset involved in self-tolerance and autoimmunity prevention. There is evidence for a phenotypic and/or Regulatory T (Treg) cells are a specialized CD4+ lym- functional impairment of this cell subset during the natu- phocyte subset able to modulate immune response to ral history of several chronic autoimmune/inflammatory environmental pathogens as well as to prevent immune diseases, including rheumatoid arthritis (RA). Although responses against inappropriate targets, including self the intracellular transcription factor FoxP3 is thought to antigens [1]. In fact, Treg cells can suppress autoreactive be the master regulator of Treg cell function, a number of lymphocyte clones that have escaped the negative selec- other molecules expressed on the cell surface have been tion in the thymus by different mechanisms, thus prevent- proposed for the identification of Treg cells. This is ing the activation and expansion of these effector cell important in order to favour their possible selective isola- subsets. Suppression can be either in a cell–cell contact tion and in the development of new therapeutic strategies. manner or via soluble factors produced by Treg cells In the present paper, available data on phenotypic and themselves [2, 3]. functional characterization of Treg cells in both peripher- The well-known role played by T cells in the develop- al blood and synovial fluid from RA patients are reviewed ment of autoimmunity was characterized in the mid- and their possible pathogenic role in triggering and per- 1990s by Sakaguchi et al.
    [Show full text]